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1 Introduction

Countries differ widely in terms of their fiscal system and inequalities. For instance, the average
mandatory levies in France were 43% of its GDP from 1995 to 2007, while they were around
26% in the US for the same period. Various explanations can rationalize these international
differences. First, production technologies can be different across countries, and so do the
distortions generated by taxation. Second, individual preferences over consumption and leisure,
as well as social preferences regarding redistribution, can differ across countries. Third, even if
technology and preferences are the same, the political system that selects and implements actual
policies can differ across countries, generating outcomes that are observationally equivalent to
alternative social preferences. The goal of this paper is to disentangle these three explanations
and to identify the contribution of social preferences in the design of actual tax systems.

To do so, we present a theory of aggregation of individual preferences into social preferences,
which can then be estimated using available data. This Bewley-type aggregation theory is based
on four assumptions. First, individuals have their own view of how the planner should care about
the welfare of all people in the society. This corresponds to the so-called ethical preferences
(Arrow, 1951, Harsanyi, 1955, or Sen, 1977). To quote Harsanyi (1955), ethical preferences are
indeed defined as an agent choosing “what he prefers only in those possibly rare moments when
he forces a special impartial and impersonal attitude on himself.”1 These ethical preferences are
represented by Individual Welfare Functions (IWFs), which are agent-specific. IWFs are thus
heterogeneous, consistently with empirical investigations (Gaertner and Schokkaert, 2012, Fehr
et al., 2013 or Stantcheva, 2021). Our second assumption is about the source of heterogeneity
for IWFs: The IWFs are the outcome of the life experience of each agent. Following the
Bewley tradition, we assume that agents’ relevant life experience is their economic history. Our
construction could easily manage other dimensions of heterogeneity, but this representation is
already sufficiently rich for us to discuss a wide variety of political implications of our estimation.
Third, we assume that the ethical preferences are of the weighted utilitarism type. Agents
value the utility of others agents by attributing some weights to the individual utility of the
latter. This representation is known to be flexible enough to embed moral and political concerns
(including Libertarian, Egalitarian or Utilitarian ones) into the planner’s motives (Saez and
Stantcheva, 2016 among others). Our fourth assumption is that the Social Welfare Function
(SWF) that the planner uses to design the fiscal policies is the (possibly biased) aggregation of
the heterogeneous IWFs. Indeed, agents can have heterogeneous political power in their ability to
affect the planners’ decisions. Consistently with the literature on political inequality (e.g., Cage,
2024 for a discussion), this could for instance be explained by lobbying powers, participation
rates in elections, or the representation of voters and their representatives. This construction
yields a SWF that is stationary at the steady state, although agents’ ethical preferences can
change with their own history. The SWF can thus be estimated in the data, and can also be
related to the concepts of public finance literature such as the Social Marginal Welfare Weights
(SMWW) and the Marginal Value of Public Funds (MVPF). As a final remark, we do not require
the SWF to fulfill the Pareto principle. Since Sen (1970) or Kaplow and Shavell (2001), it is

1These ethical preferences have a long tradition. They are the preferences of the “impartial spectator” of Adam
Smith (1759) or preferences under the “Veil of ignorance” of Rawls (1971).
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indeed known that allowing the planner’s objective to account for moral or political concerns
can imply SWFs, which do not fulfill the Pareto principle. We first present a very simple model,
where this construction is transparent.

We then develop a quantitative methodology to estimate SWFs and IWFs from the data.
We apply it to France and the US, which have the advantage of being very different in terms of
taxation and inequality. This methodology extends the standard inverse optimal approach (see
the literature review below) to a general equilibrium heterogeneous-agent model (à la Bewley-
Huggett-Aiyagari). We start with showing that a fiscal system, composed of a progressive labor
tax, a capital tax, a consumption tax and public debt, combined with an empirically relevant
income risk, can closely reproduce income and wealth inequality in 2007, both in France and in
the US. We choose the period 2007 to exclude the financial crisis and the subsequent Covid-19
crisis, which led to significant transitory changes in fiscal structures. We then consider an
heterogeneous-agent model, where agents face income risk and where the previous fiscal system
finances a public good. A Ramsey planner sets the fiscal policy to maximize a SWF, which
results from our construction. To solve this intertemporal program in general equilibrium, we use
the truncation method, which has been progressively developed in LeGrand and Ragot (2022a,
2023). We here extend this approach to be able to consider general disutility of labor, instead of
the GHH case of LeGrand and Ragot (2024). We finally use the first-order conditions (FOCs)
of this Ramsey program to compute the SWF and the IWFs for which the observed allocation
in France and in the US is a Ramsey steady state, which extends the standard inverse optimal
approach to an intertemporal general equilibrium approach. The derivation of the Ramsey FOCs
offers as a side benefit an intertemporal and general equilibrium expression of concepts of SMWW
and MVPF.

The estimation of SWFs generates three sets of results. First, the SWFs in France and in
the US are very different from each other. The US SWF weights increase with income and put
the largest weight on high-income agents. The weights for middle-class agents are lower, and
low-income agents have the lowest weight. This shape of the SWF weights is actually consistent
with the decreasing shape of SMWW estimated in the literature, as the latter include marginal
utilities, as we explain. Oppositely, the French SWF assigns the highest weight to low-income
agents. However, the SWF weights are U-shaped and the weights first decrease with income,
such that the middle-class has the lowest weight, while they then increase for high-income agents.
Maybe not surprisingly, the French SWF is egalitarian at the bottom of the distribution, but
also puts a high weight on very productive agents. Second, to understand the role of the SWF
in shaping inequality, we simulate the optimal US fiscal system if the US were to adopt the
French SWF, keeping individual preferences constant. We find that the Gini coefficient of wealth
would decrease from 78% to 63%, approaching the French Gini coefficient of wealth of 68%.
Consequently, social preferences are a primary driver of the fiscal system and household inequality.
Third, we decentralize the aggregate SWF in heterogeneous IWFs to assess the heterogeneity of
social preferences in each country. To do so, we first use turnout data in the US and in France to
estimate political weights, following the political economy literature surveyed by Cage (2024).
We then estimate the set of IWFs, which are the closest to the self-interested one and which
are consistent with the SWF. We find that the middle class is mostly libertarian in the US and
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egalitarian in France, and that there is a substantial heterogeneity in IWFs within countries.

Related literature. Our paper is related to three streams of the literature: heterogeneous-
agent macroeconomics, public finance, and social choice.

First, this paper contributes to the recent literature on optimal policies in heterogeneous-agent
models. Early contributions, such as Aiyagari (1995) analyze general properties about capital tax
in heterogeneous agent models. Aiyagari and McGrattan (1998) compute the optimal steady-state
level of public debt. Dávila et al. (2012) show that the steady-state capital stock can be too
low, solving for a constrained-efficient allocation. Some papers compute the optimal path of
relevant instruments (Conesa et al., 2009 or Dyrda and Pedroni, 2022 more recently). Some
papers rely on the FOCs of the Ramsey problem to solve for optimal policies (Bhandari et al.,
2021; LeGrand and Ragot, 2022a; Açikgöz et al., 2022). We develop the algebra to connect the
FOCs with public finance concepts and we use the recent developments of the truncation method
of LeGrand and Ragot (2024) to apply the inverse optimal approach.

Second, the paper also contributes to the public finance literature, as it makes explicit the
general equilibrium effects in the MSWW and in the MVPFs (Hendren and Sprung-Keyser, 2020
or Ferey et al., 2024 for a recent contribution). The inverse optimal approach, that we apply to an
Ramsey program of an heterogeneous-agent model, is a common tool in public finance (Bargain
and Keane, 2010; Bourguignon and Amadeo, 2015; Lockwood and Weinzierl, 2016; Hendren,
2020). Chang et al. (2018) also consider an heterogeneous-agent model to estimate inequality
aversion across countries, but avoids the computation of a Ramsey program. Heathcote and
Tsujiyama (2021) also estimate the SWF in a static environment, but allow for partial private
insurance. In this literature, our contribution is implement inverse optimal approach in general
equilibrium, contributing to fill the gap between macroeconomics and public finance.2

Third and finally, the paper contributes to the literature about SWF in heterogeneous-agent
models. There is a vast theoretical literature in the social choice literature about the possible
axiomatizations of SWFs – and the discussion of their motivations and their implications – that
dates back to Arrow (1951), Harsanyi (1955), Sen (1970), Sen (1977) among many others. An
empirical literature identifies possible relevant restrictions for SWFs from experiments (Gaertner
and Schokkaert 2012 or Fehr et al., 2013) or from surveys (Stantcheva, 2021). Informed by this
literature, we propose a construction of the SWFs as an aggregation of IWFs, which is flexible
enough to allow for estimation. We consider our construction as a possible micro-foundation
of the weights used to assess optimal policies, such as the Generalized Social Marginal Welfare
Weights introduced by Saez and Stantcheva (2016).

The paper proceeds as follows. In Section 2, we present motivating evidence on the French
and US fiscal system. We provide the basics of our Bewley construction of SWFs in Section 3 in
the context of a simple model. The construction is generalized to an infinite horizon model in
Section 4. Section 5 presents the environment in which we will compute the Ramsey program
and conduct our estimation of SWF weights. Finally, the quantitative investigation is presented

2Papers in the experimental literature elicis social preferences using the spectator game (where a spectator is
asked to split to resources between two unknown agents). For instance, Almås et al. (2020) find that US players
are more Libertarian than Norwegians, who are more Egalitarian. These findings are broadly consistent with our
analysis, which relies on an alternative identification strategy, based on the actual fiscal systems.
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Figure 1: Government spending and tax revenues average from 1995 to 2021 (as a share of GDP).
Source: own calculations.

in Section 6, while Section 7 concludes.

2 The fiscal structure in France and in the US

We report key statistics about the French and US fiscal systems. These two countries have the
particularity of being among the most different OECD countries in terms of total taxation. On
the one hand, France features one of the highest mandatory levies, while the US one of the lowest
levies. This is confirmed in Figure 1, which reports government spending on final goods and
services and tax revenues, both as a share of GDP, for the two countries. France and the US
drastically differ with respect to the size of their governments: Both government spending and
tax revenues are significantly higher in France than in the US. Moreover, the gap between tax
revenues and government spending is larger in France than in the US. This reflects that the
within-country redistribution – measured as the difference between tax revenues and government
spending – is of larger magnitude in France than in the US.

We now turn to the details of the taxation system within each country. We focus on the
average tax system from 1995 to 2007, before the 2008-crisis and the Covid crisis, which both
were the sources of (so-far) transitory changes in fiscal systems.3 We will use these values as a
benchmark for calibrating our stationary equilibrium in the quantitative exercise of Section 6.
For France and the US, we use the results of Trabandt and Uhlig (2011), who provide estimates
for the period 1995-2007. Results for France and the US are gathered in Table 1, which also
includes some elements related to inequalities.

3Actually, considering the period from 1995 to 2021, as shown in Figure 1, do not change the tax results
significantly. However, for the sake of consistency, we chose to consider a period before macroeconomic shocks.
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Total taxes τK(%) τL(%) τ c(%) B G Gini before Gini after Gini
(%GDP) (%GDP) redist. redist. wealth

France 40 35 46 18 60 24 0.48 0.28 0.68
United States 26 36 28 5 63 15 0.48 0.40 0.77

Table 1: Summary of fiscal systems and inequalities in the US and and in France. Total taxes,
public debt B and public spending G in percentage of GDP; tax rates τK , τL and τ c in percent;
Gini indices unitless.

The first column reports the total mandatory levies as a share of GDP for the two countries.
Following the literature, we report the decomposition of these total levies into three components:
capital tax, labor tax, and consumption tax. Since Mendoza et al. (1994), this decomposition is
widely used to compare the tax structure across countries (OECD, Eurostat). These three taxes
are reported in columns 2–4. The second column shows the implicit capital tax, calculated as
tax receipts on capital income divided by the capital stock. The third column provides the same
statistic for the labor tax and is computed as the tax receipts on labor income divided by the
aggregate labor supply. The fourth column reports the implicit tax on consumption.

We can observe that overall taxes are 50% higher in France than in the US. Although capital
taxes are very close in both countries, the labor and consumption taxes differ significantly. The
difference in labor tax partly stems from the financing of the French welfare system, which covers
public pensions, unemployment benefits, health care, and family allowances. It mostly relies
on social contributions based on the wage bill, which are considered as labor tax. Regarding
consumption tax, it is much higher in France compared to the US, although this high value
is comparable to those in other European countries. Tax revenues are used to finance public
spending, which includes both public consumption and public investment. Public spending, as a
share of GDP, (column G) is approximately 60% higher in France than in the US. This difference
is partly explained by larger investments in public infrastructure in France. Despite different
levels of taxation and public spending, the public debt-to-GDP ratio appears to be comparable
in France and in the US at around 60%.

We also report in Table 1 the evolution of income inequality before and after taxation. We
proxy income inequality using the average Gini index between 1995 and 2007 (included), as
reported in the OECD Income Inequality Database.4 Note that the Gini indices barely vary over
the period, and the picture would not have been different if we had reported the 2007 data only.
The before-tax Gini indices for income are roughly similar in France and in the US. This value
for France stems from the accounting of the (high) public pensions in France, which are counted
as transfers and not as income. Consequently, this contributes to increasing the before-tax
inequalities. However, the after-tax Gini indices are very different in the two countries, which is
a consequence of the high transfers to households in France. While redistribution diminishes the
Gini index for income by less than 10 points in the US, the reduction is twice as large in France
and amounts to 20 points.

The last column reports the Gini index for wealth. The data for France come from the
Household Finance and Consumption Survey (HFCS) for the 2010 wave, which is the closest

4See https://stats.oecd.org/index.aspx?queryid=66670.
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wave to our benchmark years. We have checked that the Gini index remains highly similar in
the other waves. The wealth Gini index for the US is taken from the PSID in 2006.5 As is
standard, wealth inequalities in each country are higher than for income. The wealth Gini index
in each country is approximately 30 points higher for wealth than for post-tax income. The
comparison for wealth between the US and France yields a result similar to that of the post-tax
income did: The US value is approximately 10 points higher than the French one. It confirms
that inequalities are more pronounced in the US than in France.

Although the results in Table 1 consider a linear tax for labor (column τL), the labor income
tax scheme is actually progressive both in France and in the US. Comparing the progressivity of
labor income tax across countries is challenging due to the complex tax schedules and deductions
that are specific to each country. One approach to make this comparison tractable is to use a
parametric form for the tax function. We follow the literature (e.g., Benabou, 2002 and Heathcote
et al., 2017) and consider a log-linear functional form the labor tax:

Tax: T (Ic) = Ic − κI1−τ
c , (1)

Disposable income: D(Ic) = κI1−τ
c , (2)

where Ic is the labor income of the country c, τ the level of progressivity, and κ the average level
of taxation. Notice that the higher the τ , the more progressive the tax system.

We use the Luxembourg Income Study (LIS) database for France and the US in 2005 to
estimate the tax progressivity for labor income. We restrict our attention to the heads of
households and their spouses aged between 25 and 60 who were employed. We define labor
income as the sum of wage income, self-employment income, and private transfers. Using the
estimates of the capital tax from Trabandt and Uhlig (2011), we can deduce from the capital
income the amount of capital income tax. We then subtract from the total income tax (provided
by the LIS) amount the capital tax amount, which allows us to obtain an estimated amount of
the labor income tax. We finally define the disposable income as the labor income minus the
labor income tax amount.

Using these data, we estimate the labor tax progressivity by regressing the log of disposable
income on the log of labor income – which corresponds to the log of equation (2). Table 2 reports
our estimation results for France and the US: τ̂ is the estimated labor tax progressivity and SE
the associated standard error. France has a much more progressive labor tax than the US. Our
estimate of progressivity for the US is 0.16, which closely aligns with values used in the literature.
Our value is lower than the 0.181 value estimated by Heathcote et al. (2017), as we solely focus
on estimating the progressivity of labor income and did not consider the progressivity of labor
and capital income combined.

5In the 2007 SCF, the wealth Gini index was found to be 0.78, which is very close to the PSID value.
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τ̂ SE Obs. R2

France 0.23 0.0056 5289 0.855
United States 0.16 0.0019 38111 0.942

Table 2: Estimates τ̂ of the progressivity of the labor income tax in the US and and in France
for 2005. We regress the log of equation (2) using the LIS database: SE is the standard error of
τ̂ , Obs. is the number of observations, R2 is the R2 of this regression.

We will use the elements of Table 1 and the progressivity of labor income estimate in Table 2
to calibrate our heterogeneous-agent model below – and in particular the social weights.

3 A Bewley theory of the SWF: Some initial definitions

We discuss our aggregation theory of the SWF in a simple environment that allows us to abstract
from complex algebra and heavy notation. We first explain how we construct individual welfare
functions (IWFs), which are then aggregated to form the social welfare function (SWF) (Sections
3.1 and 3.2). We then present how the SWF and the IWFs can be identified from observed
allocations (Section 3.3). We also introduce public finance concepts and also discuss how they
relate to our identification strategy. Finally, we discuss the possible interpretations of these
estimations in terms of political and social justice concepts, such as the Utilitarian, Egalitarian,
and Libertarian principles (Section 3.4).

3.1 The setup

We consider a one-period one-good economy. The unique good is a final consumption good,
over which agents have preferences. These preferences are represented by a utility function u,
which is assumed to satisfy standard properties: u′ > 0, u′′ < 0, and u′(0) =∞. We furthermore
assume that u > 0. We need this assumption for the combination of weighted utility functions to
be well-behaved. The economy is populated by two types of agents, whose population size is
normalized to 1. Each type is in equal share 1/2. Agents types only differ along their endowment.
We denote by y1 > y2 the two endowment values.

A benevolent planner has the objective to choose the best allocation subject to a feasibility
constraint. Allocations will be ranked according to a SWF whose construction is detailed below.
The feasibility constraint reflects the fact that the planner can transfer resources across type
1 and type 2 agents, but with a quadratic redistribution cost. This cost aims at capturing
all distortions generated by distribution and is scaled by a parameter κ > 0. Implementing a
consumption ci for an agent receiving the endowment yi involves a destruction of resources equal
to κ

2 (ci− yi)2. Focusing on the symmetric equilibrium where all agents of the same type i receive
the same consumption ci, the feasibility constraint can be written as:

2∑
i=1

(
ci + κ

2 (ci − yi)2
)
≤

2∑
i=1

yi. (3)

To consider meaningful solutions, we assume that the redistribution cost is not too high and
verifies κyi < 1, which formally guarantees interior solutions.
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3.2 Individual and social welfare functions

Our construction of the SWF from individual ethical preferences (IWFs) proceeds in three steps –
that we will replicate in the general case of Section 4: (i) the subjective valuation of each agent
for the welfare of others; (ii) the representation of ethical preferences which we will call Individual
Welfare Functions (IWFs); (iii) the Social Welfare Function (SWF) representing the planner’s
preferences.

The Individual Welfare Function (IWF). In our static setup, u(ci) is the utility of agent
i for the consumption ci. However, agent i also has their own view of how their welfare and this
of others should be accounted for by the planner. We model this subjective valuation of the
utility of others agents by a loading factor that weights the individual utility. Denoting by ω̃ij
the weight of agent i for agent j, the subjective valuation by agent i of the welfare of agent j is
Ṽij = ω̃iju(cj).6

We then assume that the ethical preferences of agent i are built as the aggregation of
their perception of the welfare of other agents. The IWF of agent i representing their ethical
preferences is thus the weighted sum of subjective valuations by agent i over the two agents’
types: IWFi := 1

2 Ṽi1 + 1
2 Ṽi2, or:

IWFi = 1
2 ω̃i1u(c1) + 1

2 ω̃i2u(c2). (4)

The economy thus features heterogeneity in ethical preferences: There are two types of ethical
preferences, as there are two income levels. Types thus capture the heterogeneity both in the
endowments and in the IWFs. This is in line with empirical studies, that have indeed shown
heterogeneity in ethical preferences and that this heterogeneity was partly driven by social
position. See Gaertner and Schokkaert (2012) and Stantcheva (2021) for a recent analysis based
on large US surveys.

This general case encompasses self-interested agents, who only care about their own welfare.7

The IWF of self-interested agents is proportional to their individual utility: IWFi = λiu(ci) for
some λi > 0. This corresponds to the weights ω̃ij = λi × 1i=j – with 1i=j = 1 if i = j and 0
otherwise.

Two remarks are worth mentioning regarding the generality of the weights (ω̃ij)i,j=1,2

1. Intensity of preferences. We do not impose any weight normalization, neither that they sum
to 1 (∑j ω̃ij = 1) nor that ω̃ii = 1. Since we aggregate IWFs together, the IWF weights
have indeed both an ordinal and a cardinal meaning. Their normalization is not innocuous,
as it would remove the possible heterogeneity in the intensity of ethical preferences (using
the wording of Arrow, 1951).

2. Possibility of spitefulness or discrimination. We do not restrict the sign of the weights
(ω̃ij)i,j=1,2, which are allowed to be negative. In this case, the IWF of an individual may be

6Note that to avoid imposing an implicit normalization, we do not impose ω̃ii = 1. See also below our discussion
about the intensity of preferences.

7We avoid the word “selfish” or “rational” agents, as they are too negatively or positively connoted. Sen (1977)
uses the word self-seeking for the same idea.
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negatively affected by the utility of other agents: the consumption of some other agents can
be perceived as a negative externality by certain agents. Such externalities on individual
preferences (and not only on ethical preferences as here) have been modeled in asset pricing
or macroeconomics to reflect the idiom that households want “to keep up with the Joneses”
(see Abel, 1990 or Campbell and Cochrane, 1999 among others). Such externalities have
also received support in experimental studies (see Fehr et al., 2013 among others), where
such a behavioral trait has been called spitefulness.8 Negative weights in welfare functions
could also reflect a possible discrimination of some agents’ types (Piacquadio, 2017).

The Social Welfare Function (SWF). Finally, we construct the SWF as the weighted
aggregation of the IWFs. Indeed, following the political economy literature, we assume that
agents may differ in their political ability to influence the planner in their policy implementation.
This heterogeneity in the agents’ influence may result from institutional design, lobbying activities,
or voting rules. We capture it by political weights (ωP,i)i which loads IWFs as a function of
agent’s type. We will use the political economy literature to estimate these weights. We then
define the SWF as the aggregation of IWFs weighted by political weights:

SWF = ωP,1IWF1 + ωP,2IWF2. (5)

Using the expression (4) of IWFs, we obtain the following expression for the SWF:

SWF = ω1u(c1) + ω2u(c2), (6)

where we have defined the SWF weights as follows, for some ω > 0:

ω1 := ω

2 (ωP,1ω̃11 + ωP,2ω̃21), (7)

ω2 := ω

2 (ωP,1ω̃12 + ωP,2ω̃22). (8)

While the IWFs weights have a cardinal interpretation, this is not the case of the SWF weights.
We can thus without loss of generality choose the constant ω so as to normalize the sum of
weights to 1 (ω1 + ω2 = 1).

Our construction of SWF weights embeds standard cases, such as the Utilitarian SWF.
It corresponds to self-interested agents: ω̃ij = 1i=j , with identical preference intensity. With
constant political loading factors: ωP,i = 1/2, we obtain that the SWF weights are identical
and equal to: ω1 = ω2 = 1

2 – where we have set ω = 2 in (7)–(8) for normalization purposes.
The resulting SWF is Utilitarian.9 Moreover, SWF weights are not restricted to be positive and
the aggregation procedure could be end up with negative SWF weights. In this simple setup,
this implies that the construction does not ensure that the planner only chooses Pareto-optimal
allocations. See also Section 3.4 for a lengthier discussion of these aspects.

8Fehr and Schmidt (2006) describe this behavior as follows: “A spiteful person always values the material
payoff of relevant reference agents negatively. Such a person is, therefore, always willing to decrease the material
payoff of a reference agent at a personal cost to himself”.

9Even with heterogeneous preference intensity, ω̃ij = λi1i=j , with λ1 6= λ2, we can recover the Utilitarian SWF.
Political weights must offset the preference intensity: ωP,i = λ−1

i

λ−1
1 +λ−1

2
. We then obtain with ω = λ−1

1 + λ−1
2 that

SWF weights are identical: ω1 = ω2 = 1
2 .
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3.3 Inverse optimal approach: Identifying the Welfare Functions

The identification of SWF weights. Generally speaking, the inverse optimal approach
consists in identifying social preferences from the observed allocation and available fiscal tools,
assuming that the latter are optimally set by the planner. In our setup, the fiscal system
allows the planner to directly choose the allocation (c1, c2) that maximizes the aggregate welfare,
represented by the SWF of equation (6), subject to the resource constraint of equation (3). For a
given pair of SWF weights (ω1, ω2), the optimal allocation is characterized by the following FOC:

ω1u
′(c1)

1 + κ(c1 − y1) = ω2u
′(c2)

1 + κ(c2 − y2) , (9)

together with the constraint (3). Note that the condition κyi < 1 ensures that the FOC is well
defined for all consumption levels.

The intuition for this relationship can be provided using concepts of public finance. To
clarify this link, we rewrite the planner’s program assuming that the planner chooses individual
lump-sum taxes (ti)i. The Lagrangian of the planner can be written as W + µB, where W :=
ω1u(y1 − t1) + ω2u(y2 − t2) is the SWF (6) expressed with taxes, B := ∑2

i=1(ti − κ
2 t

2
i ) is the

resource constraint (3) as a function of taxes, and µ is the associated Lagrange multiplier. The
FOC associated to the choice of ti can be written as follows:

µ = ∂W
∂ci

−∂ci
∂ti
∂B
∂ti

. (10)

This equation states that the planner equalizes the marginal benefit for the planner’s finances
of raising ti to the marginal cost for agent i of financing this marginal resource. The marginal
benefit is simply the Lagrange multiplier of the planner’s resource constraint. The marginal cost
involves two terms.

The first one, −∂ci
∂ti

/
∂B
∂ti

, measures how much the consumption of agent i is affected by the
financing of the marginal planner’s resource by the tax ti. The quantity ∂B

∂ti
= 1− κti includes

includes the tax base (equal to 1 here) and the financial externality related to the destruction
of resources, −κti. Since −∂ci

∂ti
= 1, financing the marginal planner’s resource will decrease the

consumption of agents i by −∂ci
∂ti

/
∂B
∂ti

= 1/(1 + κ(ci − yi)). We denote this term MV PFi and
call it the marginal value of public fund following Finkelstein and Hendren (2020) and Hendren
and Sprung-Keyser (2020).

The second term measures ∂W
∂ci

how much social welfare is affected by a variation of the
consumption of agents i. In the absence of welfare externality of consumption, only the welfare
of agent i is affected and we have ∂W

∂ci
= ωiu

′(ci). Following the literature (e.g., Ferey et al.,
2024 among many others), we call this term the social marginal welfare weight attributed by the
planner to agents i. We denote it as SMWWi.

Overall, the extra resource of the planner financed by agent i through ti implies a consumption
cut of MV PFi units for agents i, and a welfare impact equal to SMWWi×MV PFi. This latter
quantity can thus be interpreted as the bang for the buck of one unit of resources spent by the
planner for agents i – following again the denomination of Finkelstein and Hendren (2020) and
Hendren and Sprung-Keyser (2020).
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The interpretation of equation (9) is then rather simple. The planner sets transfers between
the two agents’ types up to the point where the planner equalizes the bangs for the buck of the
two agents: the planner is indifferent between obtaining one extra unit of resources from agents
1 or from agents 2. Should this not hold, the allocation could not be optimal: Agents with the
higher bang for buck should receive resources, at the expense of those with the lower bang for
the buck. Furthermore, from (10), the bangs for the buck of the two agents are also equal to the
marginal benefit of relaxing the resource constraint (3). Equation (9) can thus be rewritten as:

SMWW1 ×MV PF1 = SMWW2 ×MV PF2 = µ. (11)

Saez and Stantcheva (2016) have generalized this marginal approach by allowing to consider
social marginal weights that do not derive from an explicit SWF. The weights can adopt general
expressions, such as non linear effects or dependencies in endogenous variables other than
consumption. These weights are called generalized social marginal welfare weight.10

The inverse optimal approach still relies on the FOC (9), but takes a different perspective.
Instead of deducing the allocation (c1, c2) from the weights (ω1, ω2), the weights are computed
from the allocation. Formally, for a given allocation (c1, c2) satisfying the resource constraint (3),
the FOC (9) can be written as:

ω1
ω2

= u′(c2)
u′(c1)

1 + κ(c1 − y1)
1 + κ(c2 − y2) , (12)

which determines the pair of weights (ω1, ω2) with the normalization constraint. Rather than the
SWF weights ωi, we could also compute from (9) the social marginal welfare weights, ωiu′(ci).
As we discuss in Section 3.4, focusing on SWF weights is better suited for our analysis, as it
allows us to direct qualify SWF and offer possible interpretations in terms of political and ethical
terms.

The identification of IWF weights. Most of the analysis in the quantitative model of
Section 6 involves the estimation of the SWF. However, it also insightful to derive the IWFs
that are consistent with the estimated SWF, because it allows us to understand the underlying
heterogeneity in social perceptions. To do so, we implement the following strategy. First, we
consider measures of the political weights (ωP,i)i of each group, using insights from the political
economy literature. Second, in the absence of individual-level information, we identify the weights
of IWFs as those, which are the closest to the self-interested ones, while being consistent with
the estimated SWF weights. See Section 4.4 for a formal presentation.

Other benchmark IWFs could easily be considered, but the self-interested ones appear as
standard in the economic or political economy literature (see Acemoglu, 2010 for various models
of this type). The gain of this strategy is to make explicit the identifying assumptions and to
allow us to derive closed-form expressions for the IWF weights.

10The GSMWW approach allows for including a wide variety of political or moral motives. However, when the
Pareto principle is also imposed, Sher (2024) has shown that the GSMWW approach may generate inconsistencies
in the ranking of fiscal schedules.
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3.4 Interpretations of Welfare Functions

Welfare weights are known offer a possible interpretation in terms of social choice and moral
philosophy, when the allocation is known (Saez and Stantcheva, 2016). We provide below the
definitions that will be used in the quantitative exercise of Section 6.

– Utilitarian. Agents of type i will be said to be Utilitarian if they equally weight all agents:
ω̃i1 = ω̃i2. The Utilitarian planner (ω1 = ω2) will implement the consumption levels c1 > c2

if κ > 0 (recall that y1 > y1). The Utilitarian planner thus accepts some inequality among
agents due to the distributional cost.

– Egalitarian. Egalitarian agents think that economic inequality isn’t justified. Formally, this
implies putting a greater weight on poorer agents: ω̃i1 < ω̃i2. Compared to a Utilitarian
planner, the Egalitarian planner will reduce the consumption of the richest agents (type
1) and increase the consumption of poorest agents (type 2). The planner thus reduces
inequality at the cost of a lower total consumption.

– Libertarian. Libertarian agents think that agents deserve what they have. This formally
corresponds to a higher weight on richer agents: ω̃i1 > ω̃i2. The Libertarian planner will
choose an allocation implementing a higher inequality but a higher total consumption
than the Utilitarian planner. The resulting allocation is thus closer to the initial income
distribution and generates lower distributional costs.

In a two-type economy, these three cases correspond to a partition of the set of welfare weights.
Each agent type can only in one of the three above situations. This is also the case for the
planner. Note that even if the agent types belong to different categories, the planner will belong
to exactly one of those categories – depending on the combination of political weights and
preference intensity. However, such a partitioning does not hold with more than two types of
agents. We discuss such cases in the general model of Section 4.

What about Pareto deviations? Our SWF construction is not restricted to Pareto-optimal
SWF. In our simple setup, non-Pareto optimal allocations correspond to negative SWF weights.
In more general settings, this can happen even with positive SWF weights. This is for instance
the case in a framework featuring individual risk and a Libertarian planner. In that case, an
insurance mechanism could be ex-ante individually optimal for all agents, while not being chosen
by the planner. Indeed, a Libertarian planner would be reluctant to favor redistribution. Thus,
the SWF allocation may not be Pareto optimal, as it could prevent insurance mechanisms. This
is not specific to Libertarian planner. An Egalitarian planner could choose an allocation that
reduces so much the inequality that it would come at the expense of some agents. Indeed, since
Sen (1970), it is known that the SWF will not necessarily fulfill the Pareto principle if the
planner also care for other factors (ethical, moral, or political) than the individuals’ utility. More
precisely, Kaplow and Shavell (2001) have shown that the Pareto principle does not hold when
the planner departs from welfarism, i.e., when the SWF does not only include the agents’ utility.
There is therefore an incompatibility between Pareto principle and the generality of the SWF.
One of our paper objective is to propose a rationalization of observed fiscal systems and discuss
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political implications. As a consequence, we will relax the assumption of welfarism and will not
require the Pareto principle to be fulfilled by the estimated SWFs. We alternatively consider
a weaker restriction, which is that the aggregate welfare cannot decrease when increasing the
welfare of any agents. Loosely speaking, this is akin to “everybody counts”. This means assuming
positive SWF weights: ω1, ω2 > 0 (see Definition 1 in the intertemporal case).11

4 A Bewley theory of the SWF: The intertemporal case

We extend the previous construction of the SWF to a general intertemporal framework, which is
our first contribution. Our approach relies on the sequential representation of the heterogeneous
agent model, which is the most suitable for our normative analysis.12 We present the construction
of the SWF anticipating the model used in the quantitative section below.

4.1 The setup

We now consider an infinite-horizon model with incomplete financial markets. Time is discrete,
indexed by t ≥ 0. The economy is populated by a continuum of size 1 of ex-ante identical agents.

Risk structure. Idiosyncratic risk is modeled as an uninsurable idiosyncratic labor productivity
shock yt that can take Y distinct values in the finite set Y. The productivity risk follows a
first-order Markov chain with transition matrix (Πyy′)y,y′∈Y . This matrix is assumed to be
irreducible and aperiodic, which ensures that it admits a unique stationary distribution denoted
as (πy)y∈Y , normalized such that ∑y∈Y πy = 1. We denote by yt = {. . . , ytt−1, y

t
t} a one-sided

infinite sequence of elements of Y, corresponding to an history of productivity levels up to date
t. We denote the set of such histories by Y∞. Since we will need to consider the evolution of
histories from one period to another, we keep time subscripts for histories. To keep notation
simple, we will use for an history yt ∈ Y∞, the following notation: (i) ytτ ∈ Y is the productivity
level at date τ ≤ t in history yt; (ii) ys,t is the truncation of yt at date s ≤ t – such that yt and
ys,t coincide up to s: ys,tτ = ytτ for all τ ≤ s. We will use decorator to clearly distinguish possible
different histories: ỹt and yt can be different at any date.

Initial distribution. To simplify the notation below, we make two assumptions about the
initial distribution: (i) all agents start the economy with an initial infinitely-long history belonging
to Y∞; (ii) agents are initially endowed with a wealth that is only function of their history. The
assumption about wealth encompasses, among others, the case where all agents have the same
wealth or the steady-state wealth. Since we focus on steady-state distributions, of wealth in
particular, this simplification is at no cost in our environment.

11In our simple setup, this weaker restriction is equivalent to the Pareto principle, but this is not the case in
more general setups.

12Some analyses (e.g., Chang et al., 2018) have considered social weights depending on endogenous variables,
such as consumption or wealth. This is a possible source of inconsistencies and multiple equilibria. Indeed, the
planner should in that case consider how the social weights change with the allocation.
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The sequential representation. There is a mathematical subtlety in infinite-horizon models,
as the set of histories has the cardinality of the continuum (it is neither finite nor countable).
This explains why the probability space over the set of histories involves a general measure. We
thus construct a probability space over the set of all histories denoted by (Y∞,F , µ), where F is
a relevant σ-algebra and µ is a measure (see Appendix A.1). In words, for any set of histories
B ∈ F , µ(B) ≥ 0 is the measure of agents currently experiencing an history yt ∈ B.13 As the
population size of agents is normalized to 1, we furthermore have

´
yt∈Y∞ µ(dyt) = 1.14

We also need to define transitions across histories. Consider two histories yt+1, ỹt ∈ Y∞.
The probability to switch from history ỹt in the current period to another history yt+1 in the
next period is simply the probability to switch from state ỹtt to state yt+1

t+1 if yt,t+1 and ỹt are
equal and 0 otherwise. We denote this conditional probability µ1(·|ỹt), formally defined as:
µ1(dyt+1|ỹt) = Πỹtty

t+1
t+1
δỹt(dyt,t+1), where δỹt is the Dirac delta function in ỹt.15

We then define by induction the probability to switch from history ỹt to another history
yt+s s periods ahead as: µs(dyt+s|ỹt) = Πyt+st+s−1y

t+s
t+s
µt−1(dyt+s−1,t+s|ỹt), or: µs(dyt+s|ỹt) =∏s−1

k=0 Πyt+s
t+ky

t+s
t+k+1

× δỹt(dyt,t+s). In words, switching from ỹt to yt+s imposes that the two
histories coincide up to period t and then involves the cumulative probability to successively
experience the states from yt+st+1 to yt+st+s.

Individual intertemporal welfare. For a given allocation, we denote by U(yt) the period
utility of an agent having history yt. To lighten notation, we choose not to make the dependence
in the allocation explicit. For instance in the case of a utility depending on private consumption,
and labor supply (as in our quantitative application), U(yt) := u(c(yt)) − v(l(yt)), where:
c : Y∞ → R+ and l : Y∞ → R+ are policy functions determining consumption and labor as a
function of individual history. We still assume that U is always positive, which ensures, as in the
simple case, that the combination of weighted utility functions is well-behaved.

The intertemporal welfare in period t of an agent with history yt is assumed to be separable
in time and of the expected-utility type. It is thus defined as the discounted sum over all future
dates of expected period utilities. Formally, the intertemporal utility V (yt) is:

V (yt) =
∞∑
s=0

βs
ˆ
ỹt+s∈Y∞

U(ỹt+s)µs(dỹt+s|yt). (13)

As we consider steady-state allocation, the intertemporal welfare can be written recursively as:

V (yt) = U(yt) + βEỹt+1

[
V (ỹt+1)|yt

]
, (14)

where Eỹt+1
[
V (ỹt+1)|yt

]
=
´
ỹt+1∈Y∞ V (ỹt+1)µ1(dỹt+1|yt) is a conditional expectation. See Ap-

pendix A.3 for a proof.
13An history is an event of measure zero in F . Therefore, every equality that holds for all history yt should be

understood as holding almost surely.
14In finite time, we would write

∑
yt∈Yt µt(yt) instead of

´
yt∈Y∞ µ(dyt). All intuitions of the finite-time

representation are valid.
15The function µ1 is a measure and verifies the standard properties of a conditional probability: µ1 ≥ 0,´
yt+1∈Y∞ µ1(dyt+1|ỹt) = 1 and

´
ỹt∈Y∞ µ1(dyt+1|ỹt)µ(dỹt) = µ(dyt+1). See the proofs in Appendix A.2.
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4.2 Constructing the SWF

We extend the SWF construction of Section 3 to the current intertemporal framework. As
previously, our construction involves three steps. The first step is slightly different than in the
simple case. In the simple framework, agents of type i had their own subjective valuation of
how the utility of agents of type j should be valued by the planner. Since histories are the
sole source of heterogeneity among agents, the perception of others’ situation thus relies on the
perception of other histories. This results in a subjective valuation by agents yt of the utility of
other agents with history ỹt. The second and third steps are more similar to their counterpart of
the simple model. The second step is to aggregate the perception of other histories’ over the
entire distribution µ of histories, which yields the Individual Welfare Function (IWF) of agents
with history yt. The third and final step is to construct the Social Welfare Function (SWF) as
the weighted sum of individual IWFs over all histories yt. We now present this aggregation more
formally.

Step 1: Constructing the subjective valuation of the utility of another agent. We
consider two groups of agents characterized by their histories yt ∈ Y∞ and ỹt ∈ Y∞ at some date
t; the allocation is still considered as given. Given our previous assumption about individual
preferences, the tilde agents value in s ≥ 0 periods the allocation of any history ŷt+s as U(ŷt+s)
(whether ŷt+s is a possible successor of ỹt or not). However, the non-tilde agents may possibly have
a different perception of how the allocation history ŷt+s should be valued. Non-tilde agents assign
to the utility U(ŷt+s) of the tilde agents a corrective factor, denoted by ω̂(yt, ŷt+s), such that
ω̂(yt, ŷt+s)U(ŷt+s) corresponds to the valuation of history ŷt+s by the non-tilde agents. Summing
over all future periods and all future histories the discounted valuations ω̂(yt, ŷt+s)U(ŷt+s) – with
the proper conditional probabilities – yields the valuation of the utility of the tilde agents by the
non-tilde agents. Denoting by V̂ (yt, ỹt) this subjective valuation, we obtain:

V̂ (yt, ỹt) =
∞∑
s=0

ˆ
ŷt+s∈Y∞

βsω̂(yt, ŷt+s)U(ŷt+s)µs(dŷt+s|ỹt), (15)

which is a direct modification of the utility V (ỹt) with the inclusion of the weights ω̂(yt, ŷt+s).

Step 2: Constructing the Individual Welfare Function (IWF). The IWF of the agents
with history yt is then constructed as the aggregation of their subjective valuation V̂ (yt, ỹt) over
possible histories ỹt. Formally:

IWF (yt) =
ˆ
ỹt∈Y∞

V̂ (yt, ỹt)µ(dỹt). (16)

The IWF is a representation of the ethical preferences of agents with history yt. It represents
how the agents yt think the welfare of all other agents should be accounted for by the planner.
As in the simple model, we do impose any weight normalization at this stage.

Step 3: Aggregating IWFs to obtain the Social Welfare Function. We assume that
the planner observes the IWFs in the population and aggregates them all depending on the
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weights assigned to each agent. Not all agents have the same importance for the planner and
they differ along what we call their political weights – as in the simple model. Formally, the IWF
of agents with history yt will be assigned by the planner the weight ωP (yt). This weight is a
shortcut for the importance of agents with history yt in the political process and hence in their
ability to have their own IWF accounted for by the planner. Formally:

SWF =
ˆ
yt∈Y∞

ωP (yt)IWF (yt)µ(dyt). (17)

Special cases. To illustrate our construction, we now consider special cases.
The first case is when agents identically value other histories. Formally, the weights of agent

yt are the same for all histories ŷt+s: ω̂(yt) := ω̂(yt, ŷt+s), with a slight abuse of notation. In that
case, the ethical preferences can be shown to be represented by an IWF that is proportional to
the utilitarian SWF: IWF (yt) = ω̂(yt)

´
ỹt∈Y∞ V (ỹt)µ(dỹt). All agents have the same weights in

the agents’ ethical preferences. Consequently, there is no disagreement in the population for the
ordering of allocation. The SWF reflects this absence of disagreement and is also proportional to
the utilitarian SWF: SWF =

(´
ỹt∈Y∞ ωP (ỹt)ω̂(ỹt)µ(dỹt)

) ´
yt∈Y∞ V (yt)µ(dyt).16

Second, we consider the so-called self-interested agents, who only care about the histories
they can possibly experience. Formally, the weights of an agent with history yt will be zero
for histories that are not possible continuations of yt: ω̂(yt, ŷt+s) := δyt(ŷt,t+s)ω̂(yt), with a
slight abuse of notation again. In that case, the ethical preferences of agents with history yt are
identical to their individual preferences and their IWF is proportional to their intertemporal
utility: IWF (yt) = ω̂(yt)V (yt). This illustrates that these agents only care about themselves,
which justifies our denomination of “self-interested”. In that case, the SWF is equal to a weighted
sum of individual intertemporal utilities: SWF =

´
yt∈Y∞ ωP (yt)ω̂(yt)V (yt)µ(dyt), which is a

weighted additive SWF. It reduces to a utilitarian SWF when the weight product ωP (·)ω̂(·) is
constant.

4.3 Properties of the SWF

An explicit expression of the SWF. We state the following proposition.

Proposition 1 The SWF (17) admits the following expression:

SWF =
∞∑
t=0

ˆ
yt∈Y∞

βtω(yt)U(yt)µ(dyt). (18)

where the weights ω are given by:

ω(yt+s) =
ˆ
ỹt∈Y∞

ωP (ỹt)ω̂(ỹt, yt+s)µ(dỹt). (19)

The proof can be found in Appendix A.4. Proposition 1 provides a simple expression for
the SWF. It states that we can find period weights ω depending on the current history such
that the SWF expresses as the discounted sum over all dates and histories of the utility of that

16This property is known at least since Aiyagari (1995), to justify the use of the Utilitarian SWF under the veil
of ignorance.
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date and history, weighted by the factor ω. In other words, this twists the standard utilitarian
SWF by weighting period utilities by a factor depending on the period history – the utilitarian
SWF corresponding to a constant ω. The SWF weight ω(yt+s) in (19) can be interpreted as the
“average” weight given to history yt+s by all agents in the economy, where agents are weighted
by their political leverage ωP .

The sequential representation (18) of the SWF can also be written as a recursive representation:
SWF =

´
yt∈Y∞ ω(yt)U(yt)µ(dyt) +β ·SWF , which can be seen as the extension of the recursive

representation of the utilitarian SWF to history-dependent weights. This recursive representation
is very simple because of our stationarity assumption. When considering the whole dynamics
of the economy, the utility Ut is time-dependent (because of time-dependent allocation). The
SWF representation is then: SWFt =

´
yt∈Y∞ ω(yt)Ut(yt)µ(dyt) + β · SWFt+1. We use the latter

representation when solving the Ramsey program.

Weight restriction. As discussed in the simple framework, we do not restrict the SWF to
satisfy the Pareto principle. We do, however, impose a weaker restriction. To formally express
this restriction, we need to make the dependence in the allocation explicit. We now denote the
period utility U : Y∞ ×A → R and the SWF: SWF : A → R, where A is the set of allocations.
The period utility for an history yt and an allocation A will be denoted by U(yt, A). For instance,
in the case of our quantitative application, we denote U(yt, A) := u(c(yt))− v(l(yt)), where A is
the pair of policy functions (c, l). We can state our result using this notation.

Definition 1 A SWF SWF : A → R, associated with a period utility U : Y∞ ×A → R, is said
to be element-wise monotone if for any two allocations A and A′ such that U(yt, A) ≥ U(yt, A′)
for all yt, we have SWF (A) ≥ SWF (A′).

This definition states that with a monotone SWF, if an allocation is in every period better
(in the sense of the period utility) than another one, the former will always be preferred, in the
sense of the SWF, to the latter. This property is similar to element-wise monotonicity for utility
functions. Obviously, this is weaker than the Pareto principle, which would require A to be
preferred to A′ in the sense of the intertemporal utility, and not only of period utility.17

Proposition 2 A SWF fulfills element-wise monotonicity iff the weights ω defined in (19) are
nonnegative.

The proof can be found in Appendix A.5. Our quantitative estimations may impose the
positivity of weights, which corresponds to an element-wise monotone SWF. This means that
the SWF cannot increase if the welfare of one agent is reduced: everybody (positively) counts.

4.4 Identification of the weights

The SWF expression in Proposition 1 is very general and does not easily lend itself to estimation.
We thus introduce a tractability assumption that allows us to compute the weights in the SWF

17This explains why the planner may choose not to implement an insurance mechanism, even if this mechanism
is individually desirable. Indeed, the mechanism implies higher utility in some states (typically the “bad” ones)
and lower utility in others (typically the “good” ones). This does not verify our element-wise monotonicity of
Definition 1.
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and the IWFs. We assume that agents will the same current productivity level all value identically
future histories and that this valuation actually only depends on the current productivity level
of the history under consideration.18 We make a similar assumption for political weights that
are also supposed to only depend on the current productivity level. More formally:

Assumption A There exist two functions, denoted with a slight abuse of notation ω̃ : Y×Y → R
and a function ωP : Y → R such that for all histories yt, ỹt+s ∈ Y∞, we have:ω̃(yt, ỹt+s) := ω̂ytt ,ỹ

t+s
t+s
,

ωP (yt) := ωP,ytt ,

where we recall that ytt is the current productivity level in history yt.

Assumption A reduces the dimensionality of loading factors, which are now defined on
finite sets. Weights can now be interpreted as loading factors on productivity levels. To avoid
heavy notation, we keep the same notation but use subscripts to denote the dependence in
productivity level. The weights ω of equation (19) can also now be shown to verify for all y ∈ Y :
ωy = ∑

ỹ∈Y πỹωP,ỹω̃ỹ,y, where πỹ is recalled to be the share of agents with productivity ỹ.
The identification of the weights proceeds in two steps: (i) the SWF weights (ωy)y∈Y from

the data; and (ii) the IWF weights (ωỹy)y,ỹ∈Y from the SWF weights and the data. Without loss
of generality, we now impose for the identification a normalization constraint of the weights that
are assumed to sum to 1: ∑y πyωy = 1.

The SWF weights. Our identification strategy for the SWF weights consists in finding the
weights for which a given fiscal system (typically the observed one) can be seen as the outcome of
a Ramsey program. Formally, the FOCs of the Ramsey planner imply some linear constraints for
the SWF weights (ωy)y∈Y . The number of constraints, n, depends on the number of instruments
of the planner. In the general case, the system of constraints (the n linear ones and the
normalization) is weakly underdetermined, which means that the number of productivity state
|Y| is greater than the number of constraints, |Y| ≥ n+ 1 (for any set X, |X| is the cardinality
of X).19 There are thus p = |Y| − n− 1 degree of freedom.

Our solution to handle the underdetermination is to follow Heathcote and Tsujiyama (2021)
and to assume that the weights are a parametric function of y, with exactly n+ 1 parameters.
With mild assumptions on the functional forms, the weights are exactly and uniquely identified, as
the solution of the non-linear system of constraints. We summarize it in the following definition.

Definition 2 We consider as given a set of 1 ≤ n ≤ |Y|− 1 linear constraints represented by the
matrix (Lk,y)k=1,...,n,y∈Y and a set of parametric functions fy : Rn+1 → R (y ∈ Y) characterizing
weights. The estimated SWF weights are characterized by the vector (ωy)y∈Y = (fy(θ))y, where

18We have also extended the representation to allow the SWF weights to depend on the recent history of agents
rather than solely on their last productivity level. The estimated results for the SWF are very similar, showing that
current productivity is almost a sufficient statistic. For this reason, we directly consider the restriction that the
SWF weights only depend on the current productivity level. The results of the extended estimation are reported
in Appendix F.

19Typically, in the quantitative exercise, there are 10 idiosyncratic states and 4 instruments of the planner.
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θ ∈ Rp solves the following system:

0 =
∑
y∈Y

Lk,yfy(θ) for all k = 1, . . . , n, (20)

1 =
∑
y∈Y

πyfy(θ). (21)

As a robustness check, we also consider a non-parametric estimation of the weights. In this
case, the system (20)–(21) is underdetermined and the weights are chosen as the solution of
(20)–(21) with the lowest variance across productivity levels. Both solutions imply weights that
are quantitatively very similar, which we see as positive for the identification strategy. See
Appendix F for definitions and results in the non-parametric case.

The IWF weights. The identification of the IWF weights is of higher dimensionality and
requires to compute the |Y|×|Y| parameters ω̂ỹy. As explained in Section 3.3 for the simple setup,
we choose the weights ω̃ that are the closest to the self-interested ones, while being consistent
with the SWF weights. The following definition formalizes it.

Definition 3 We consider as given SWF weights (ωy)y and policy weights (ωP,y)y. The estimated
IWF weights are given by the matrix (ω̃ỹy)ỹ,y that solves the following program:

(ω̃ỹy)ỹ,y =argmin(ω̂ỹy)ỹ,y
∑

(y,ỹ)∈Y∞2

πỹ

(
ω̂ỹy −

1y=ỹ
ωP,yπy

)2

,

s.t. ωy =
∑
ỹ∈Y∞

πỹωP,ỹω̂ỹy.

The solution to this program is for (y, ỹ) ∈ Y∞2:

ω̂ỹy = 1y=ỹ
ωP,yπy

+ ωP,ỹ∑
ỹ∈Y∞ πỹ(ωP,ỹ)2 (ωy − 1). (22)

The proof for the derivation of the weight expression can be found in Appendix A.6. The
IWF weights in equation (22) are quite straightforward to interpret. They are separable in two
terms, which are the self-interested weights and the distance of the SWF weights to utilitarian
ones, weighted by a factor proportional to the political weight ωP,ỹ. Formally:

ω̃ỹy = 1y=ỹ
ωP,yπy︸ ︷︷ ︸

=self-seeking weights

+ ωP,ỹ∑
ỹ∈Y∞ πỹ(ωP,ỹ)2 × (ωy − 1).︸ ︷︷ ︸

=distance to utilitarian SWF

(23)

This simple decomposition mostly comes from choosing ( 1y=ỹ
ωP,yπy

)y,ỹ for the benchmark weights
to which the distance should be computed. Indeed, it implies that the IWF weights reduce to
self-interested ones (ω̃ỹy = 0 if y 6= ỹ) for utilitarian SWF weights (wy = 1 for all y). It can be
shown that they are the only benchmark for which this property holds.

To push the interpretation further, we consider the quantity πỹωP,ỹω̂ỹy, which is the measure
of how much the perception of agents ỹ contributes to the SWF weight ωy of agent y. We have:
πỹωP,ỹω̂ỹy = 1y=ỹ+ πỹ(ωP,ỹ)2∑

ỹ∈Y∞ πỹ(ωP,ỹ)2 (ωy−1). It includes a visible self-interested component: 1y=ỹ,
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showing that along this dimension, the perception of agents ỹ to the SWF matter only when
they perceive themselves. The second component can be perceived as an altruistic dimension
when it is positive, or a spiteful component when it is negative. All agents ỹ will perceive agents
y proportionally to the distance of the SWF weights of these agents to utilitarian. The loading
factor put by agents ỹ is proportional to πỹ(ωP,ỹ)2, which is increasing in the population share
and political weights of agents ỹ.

5 The general model and the Ramsey program

We now construct the macroeconomic model allowing for estimation of the SWF and IWFs. We
consider a mass 1 of ex-ante identical agents that is affected by a productivity risk denoted by y
– the risk structure is the same as in Section 4. We further assume two goods in the economy: a
final consumption good, whose consumption is denoted by c and labor, whose supply is denoted
by l. The rest of the specification involves: the planner’s fiscal structure in Section 5.1 and
the households’ program and the competitive equilibrium in Section 5.2. The corresponding
Ramsey program and its FOCs are described in Section 5.3. We finally discuss the identification
of weights in Section 5.5.

5.1 Production and government

Production. In any period t, a production technology with constant returns to scale transforms
capital Kt−1 and labor Lt into F (Kt−1, Lt, ) units of output. The production function is smooth
in K and L, satisfies the standard Inada conditions, and exhibits constant-to-scale returns. This
formulation allows for capital depreciation, which is subsumed by the production function F .
Labor Lt is the total labor supply measured in efficient units. The good is produced by a unique
profit-maximizing representative firm. We denote by w̃t the real before-tax wage rate in period t
and by r̃t the real before-tax rental rate of capital in period t. Profit maximization yields in each
period t ≥ 1:

r̃t = FK(Kt−1, Lt) and w̃t = FL(Kt−1, Lt). (24)

Government. A benevolent government must finance a path of public spending, (Gt), using
several instruments. First, the government can levy one-period public debt Bt, assumed to be
default-free. As there is no aggregate risk, public debt and capital are perfectly substitute and
they payoff the same pre-tax interest rate r̃t. Second, the government can raise a number of
distortionary taxes, which concern consumption, labor income, and capital revenues. Consumption
and capital taxes are linear and are denoted by τ ct , and τKt at date t. Regarding the tax on labor
income, note that the pre-tax labor income of an agent with productivity y and labor supply l
is w̃yl. The associated labor income tax, denoted by Tt(w̃yl), is assumed to be non-linear and
possibly time-varying, as in Heathcote et al. (2017) (henceforth, HSV):

Tt(w̃yl) := w̃yl − κt(w̃yl)1−τt , (25)
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where κ captures the level of labor taxation and τ the progressivity. Both parameters will be
planner’s instruments. When τt = 0, labor tax is linear with a rate 1− κt. Oppositely, the case
τt = 1 corresponds to full income redistribution, where all agents earn the same post-tax income
κt. Functional form (25), combined with a linear capital tax, allows one to realistically reproduce
the actual US system and its progressivity.20

These three taxes imply a total governmental revenue equal to τ ct Ct +
´
i Tt(w̃tyi,tli,t)`(di) +

τKt r̃t(Kt−1 + Bt−1), where Ct is the aggregate consumption, and At−1 := Kt−1 + Bt−1 is the
aggregate savings in period t− 1 and r̃tAt−1 the capital revenues in period t.

With these elements, the governmental budget constraint can be written as follows:

G+ (1 + r̃t)Bt−1 = τ ct Ct +
ˆ
i
Tt(w̃tyi,tli,t)`(di) + τKt r̃tAt−1 +Bt. (26)

We define the post-tax rates rt and wt, as follows:

rt := (1− τKt )r̃t, wt := κt(w̃t)1−τt . (27)

Using the property of constant-return-to-scale for F and the definition of post-tax rates (27), the
governmental budget constraint can be written as:

G+ (1 + rt)Bt−1 + wt

ˆ
i
(yi,tli,t)1−τt`(di) + rtKt−1 = τ ct Ct + F (Kt−1, Lt) +Bt. (28)

5.2 Households program

Period utility. We specify the period utility function U of agents. It is defined over private
consumption c and labor supply l, and is assumed to be separable. Formally:

U(c, l) := u(c)− v(l). (29)

The function u : R+ → R is twice continuously differentiable, strictly increasing, and strictly
concave, with u′(0) =∞, while v : R+ → R is twice continuously differentiable, strictly increasing,
and strictly convex, with v′(0) = 0.21

Agents’ program. Agents’ resources consist of labor income and saving payoffs. The post-
tax labor income of an agent with productivity yi,t and supplying labor effort li,t amounts
to w̃tyi,tli,t − Tt(w̃tyi,tli,t) = wt(yi,tli,t)1−τt . Since public debt and capital shares are perfect
substitutes, savings payoffs are equal to (1 + rt)ai,t−1, where ai,t−1 is the end-of-period-t − 1

20The literature uses either the combination of a linear tax and of a lump-sum transfer (e.g., Dyrda and Pedroni,
2022, Açikgöz et al., 2022) or the HSV structure (see Ferriere and Navarro, 2023). Heathcote and Tsujiyama (2021)
show that the HSV structure is quantitatively more relevant.

21Without loss of generality we can assume that U is positive for all choices actually made by agents. We can
indeed shift u or v by a harmless constant. Note that this constant has no effect on our estimation of the SWF as
the strategy of Definition 2 only involves Ramsey FOCs: marginal utilities matter, but utilities in level do not.
See Algorithm below.
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saving of agent i. Agents use these resources to save and to consume. Formally:

max
{ci,t,li,t,ai,t}∞t=0

E0

∞∑
t=0

βt (u(ci,t)− v(li,t)) , (30)

(1 + τ ct )ci,t + ai,t ≤ wt(yi,tli,t)1−τt + (1 + rt)ai,t−1, (31)

ai,t ≥ −a, ci,t > 0, li,t > 0, (32)

where E0 an expectation operator (with respect to idiosyncratic risk), and where the initial state
(yi,0, ai,−1) is given.

At date 0, agents decide their consumption (ci,t)t≥0, their labor supply (li,t)t≥0, and their
saving plans (ai,t)t≥0 that maximize their intertemporal utility of equation (30), subject to a
budget constraint (31) and a previous borrowing limit (32), while prices are assumed to be
exogenous. These decisions are functions of the initial endowment ai,−1, and the history of
idiosyncratic shocks yti . However, to simplify notation, instead of writing the agents’ optimal
decision as a function of these variables (as was done in Section 4), we simply denote it with the
subscripts i and t. For instance for a generic variable X, instead of using the dependence in the
history yti , we simply write it Xi,t. Similarly, instead of summing over all histories in period t,
we simply sum over all agents in a given period:

´
iXi,t`(di), where ` is the distribution of agents

on the population interval J .
The FOCs associated with the agents’ program (30)–(32) can be written as follows:

u′(ci,t) = βEt
[
(1 + rt+1) 1 + τ ct

1 + τ ct+1
u′(ci,t+1)

]
+ νi,t, (33)

v′(li,t) = 1− τt
1 + τ ct

wtyi,t(yi,tli,t)−τtu′(ci,t), (34)

where the quantity βtνi,t denotes the Lagrange multiplier on agent i’s credit constraint at t.

Market clearing and resources constraints. The clearing conditions for capital and labor
markets can be written as follows:

ˆ
i
ai,t`(di) = At = Bt +Kt,

ˆ
i
yi,tli,t` (di) = Lt. (35)

Equilibrium definition. We provide a formal definition in Appendix B. Intuitively, for a
given fiscal policy (τ ct , τKt , τt, κt, Bt)t, the competitive equilibrium is a collection of individual
decisions (ci,t, li,t, ai,t, νi,t)t,i, of aggregate quantities (Kt, Lt, Yt)t, and prices (wt, rt, w̃t, r̃t)t that
are consistent with the agents’ optimization program (30)–(32), the clearing equation (35) of
financial and labor markets, as well as the definition of pre- and post-tax factor prices (24) and
(27). The competitive equilibrium is at the steady state when all quantities are time-invariant.

5.3 The Ramsey problem and the identification of weights

We follow the construction of Proposition 1 for the SWF. We also require Assumption A to hold
for identification purposes. With our period utility separable in consumption and labor, the
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period 0 SWF is:

SWF0 := E0

[ ∞∑
t=0

βt
ˆ
i
ωyi,t (u(ci,t)− v(li,t)) `(di)

]
, (36)

where the weights (ωy)y∈Y solely depend on the current productivity level due to Assumption A.
In the Ramsey program, the planner aims to determine the fiscal policy corresponding to the

competitive equilibrium that maximizes aggregate welfare according to the criterion in equation
(36), while satisfying the government’s budget constraint. A Ramsey equilibrium is a fiscal policy,
prices, individual allocations and aggregate quantities solving the Ramsey program. A Ramsey
steady state equilibrium is a time-invariant Ramsey equilibrium. Formally, the Ramsey program
can be stated as follows.

max
(wt,rt,w̃t,r̃t,τct ,τKt ,τt,κt,Bt,Gt,Kt,Lt,(ci,t,li,t,ai,t,νi,t)i)t≥0

W0, (37)

Gt + (1 + rt)Bt−1 + wt

ˆ
i
(yi,tli,t)1−τt`(di) + rtKt−1 = τ ct Ct + F (Kt−1, Lt, st) +Bt, (38)

for all i ∈ I: (1 + τ ct )ci,t + ai,t = (1 + rt)ai,t−1 + wt(yi,tli,t)1−τt , (39)

ai,t ≥ −ā, νi,t(ai,t + ā) = 0, νi,t ≥ 0, (40)

u′(ci,t) = βEt
[
(1 + rt+1) 1 + τ ct

1 + τ ct+1
u′(ci,t+1)

]
+ νi,t, (41)

v′(li,t) = (1− τt)
1 + τ ct

wtyi,t(yi,tli,t)−τtu′(ci,t), (42)

Kt +Bt =
ˆ
i
ai,t`(di), Lt =

ˆ
i
yi,tli,t` (di) , (43)

and subject to the definition (24) of pre-tax wage and interest rates w̃t and r̃t, the definition (27)
of post-tax rates, the positivity of labor and consumption choices, and initial conditions.

Since the Ramsey program involves selecting a competitive equilibrium, its constraints include
the equations characterizing this equilibrium: individual budget constraints (39), individual credit
constraints (and related constraints on νi,t) (40), Euler equations for consumption and labor -
(41) and (42) - and market clearing conditions for financial and labor markets (43). Moreover,
the fiscal policy selected by the Ramsey equilibrium should also fulfill the governmental budget
constraint (38) – which is also a constraint.

The general Ramsey program can be simplified. First, in our setup with a linear tax on
capital, a progressive tax on labor, and one-period public debt, the consumption tax is redundant
with other fiscal instruments. Second, we can follow Chamley (1986) and express the program
using post-tax prices only. Combining the two simplifications implies that the planner’s fiscal
instruments are: post-tax wage and interest rates Wt and Rt, labor tax progressity and public
debt. They need to be chosen such that the governmental budget constraint (28) holds. The
other choice variables of the planner also include individual and aggregate allocations that have
to be chosen so as to correspond to a competitive equilibrium. This means that individual
budget constraints (31), borrowing limits (32), and FOCs (33)–(34) are constraints of the Ramsey
program – as well as market clearing conditions (35). The reformulated Ramsey program is
formally stated in Proposition 3 of Appendix C.1.
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5.4 Interpreting the Ramsey FOCs in the light of public finance

The economic trade-offs faced by the planner can be identified by the FOCs of the Ramsey
program, which can be found in Appendix C.2.22 We here discuss the economic interpretation
of the FOCs of the Ramsey program using the concepts of public finance and extending our
discussion of Section 3.3.

We focus here on an arbitrary fiscal instrument (It)t, which in our context can be the capital
tax (or the post-tax instrument Rt), the labor tax level (or the post-tax instrument Wt), or the
labor tax progressivity. This analysis thus includes all instruments except public debt, which
is discussed below. We consider that the planner raises resources through a variation of the
fiscal instrument, which decreases the consumption of all agents. The Lagrangian associated to
problem (37) can be written as:

L = E0

∞∑
t=0

βt (Wt + µtBt) .

First, Wt is the “augmented welfare” of date t that includes the pure welfare component
ωyi,t(u(ci,t)− v(li,t)), as well as the general-equilibrium effects implied by individual decisions
about savings (i.e., Euler equation) and labor supply (i.e., FOC labor supply).23 This term
depends on the fiscal instrument It, and on all consumption levels (ci,t)i of date t. Second, Bt is
the governmental budget constraint at date t and µt the associated Lagrange multiplier – we keep
the same notation as in the simple case. As shown in Appendix C.2, the quantity Bt depends on
It but not on (ci,t)i. With this notation, the FOC with respect to It can be written as:24

µt =
ˆ
i

∂Wt

∂ci,t

∣∣∣∣∣
It︸ ︷︷ ︸

=SV Li,t

−∂ci,t
∂It

∂Rt
∂It

+ 1
µt

∂Wt
∂It

∣∣∣
ci,t︸ ︷︷ ︸

=MV PF Ii,t

`(di), (44)

or
µt =

ˆ
i
SV Li,t ×MV PF Ii,t`(di). (45)

As in the simple case, the planner sets the instrument value to the point where the shadow price
of the governmental budget constraint (µt) equals its marginal cost, which equals to the sum
over all agents of the individual (negative) bangs for the buck of a cut in agents’ consumption
due to a change in the fiscal instrument. The cost covers all agents as the instrument It is a
non-specific tax. Similarly to the simple case (11), the individual bangs for the buck of one unit
of resources raised through the fiscal instrument I equals the product of SVL, SV Li,t (which is
independent of the fiscal instrument and generalizes the notion of social marginal weight), and
the MVPF, denoted MV PF Ii,t (which is instrument-specific).

Similarly to the simple model, SV Li,t (which we denote by ψi,t in Appendix C) quantifies
the welfare reduction (increase) associated to a one-unit reduction in the consumption of agents

22Solving such a program through a Lagrangian raises a number of technical questions that have been discussed
in LeGrand and Ragot (2024) in details.

23The consumption tax is redundant and as such does not imply any specific FOC.
24 ∂Wt

∂ci,t

∣∣∣
It

is the partial derivative of Wt with respect to ci,t while keeping It constant; ∂Wt
∂It

∣∣
ci,t

is the partial
derivative of Wt with respect to It while keeping all ci,t constant.
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i, regardless of the fiscal instrument causing this reduction. As explained above, this welfare
reduction includes the endogenous effects on labor supply and savings generated by the variation
in consumption. The total welfare effect thus includes three terms:

SV Li,t = ωi,tu
′(ci,t)︸ ︷︷ ︸

=direct effect

− (λc,i,t −Rtλc,i,t−1)u′′(ci,t)︸ ︷︷ ︸
=externality on savings incentives

(46)

+ λl,i,t(1− τt)Wt(yi,t)1−τt(li,t)−τtu′′(ci,t)︸ ︷︷ ︸
=externality on labor supply incentives

,

where βtλc,i,t and βtλl,i,t are the Lagrange multipliers on agent i’s Euler equation and labor supply
FOC, respectively. The first term, ωi,tu′(ci,t), reflects the direct welfare effect of a consumption
variation. This is identical to the social marginal welfare weight in equation (11). However,
in our setting, welfare is also affected by the changes in savings and labor supply induced by
the variation in consumption. The welfare impact due to savings channels through the Euler
equation, while the one due to labor supply channels through the FOC on labor supply. This
explains why the indirect welfare effects of savings and labor supply are proportional to the
Lagrange multipliers. The notion of SVL thus generalizes the notion of MSWW to endogenous
labor and savings choices.25

The MVPF measures the variation (here, a decrease) in consumption implied by a one resource
unit taken from agent i by a marginal variation of the fiscal instrument It, including all fiscal
externalities implied by the instrument. In the term MV PF Ii,t of equation (44), in the absence
of direct pecuniary externality of It, ∂Bt∂It

measures the direct effect of the fiscal instrument on
planner’s resources and is equal to the instrument fiscal base (i.e., all payoffs of interest-bearing
assets for the capital tax or the labor supply for the labor tax level). Conversely, 1

µt
∂Wt
∂It

∣∣∣
ci,t

is
the fiscal externality of It that channels through the modification of the savings incentives and
the Euler equation. This fiscal externality reflects that the instrument It is distortionary.

Note that if the planner would have access to a standard aggregate lump-sum transfer
T , the MVPF associated to that tax instrument would simply be 1. Indeed, the lump-sum
transfer involves no externality and is a flow of resources from the transfer to agents’, such that:
∂Wt
∂Tt

∣∣∣
ci,t

= 0 and −∂ci,t
∂Tt

= ∂Rt
∂Tt

. Therefore, the planner would set Tt such that µt =
´
i SV Li,t`(di):

the marginal cost for governmental budget equals the marginal benefit for all agents. Should
the planner would further have access to individual-specific lump-sum transfers T i, each would
be set such that would µt = SV Li,t. As explained in LeGrand and Ragot (2024), the difference
SV Li,t − µt can thus be thought as capturing the cost of distortionary fiscal instruments for the
planner, concerning agent i.

Public debt is the only fiscal instrument for which a FOC similar to equation (45) does
not hold. Indeed, public debt at date t affects the contemporaneous governmental budget
constraint, Bt (due to debt issuance), and the one of the next date, Bt+1 (due to debt repayment).
Furthermore, public debt has no direct impact on households welfare: ∂Wt

∂Bs
= 0. The FOC

25This SVL is similar to the quantity ĝ defined in Ferey et al. (2024) and that they describe as “the social
marginal welfare weights augmented with the fiscal impact of income effects” and which represent “the full social
value of marginally increasing the disposable income of [an] individual”.
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related to debt can be written as µt ∂Bt∂Bt
= βµt+1(−∂Bt+1

∂Bt
): relaxing the budget constraint today

comes at the cost of tightening it tomorrow. With the expression of the governmental budget
constraint, the public debt FOC becomes µt = βµt+1(1 + rt+1). This FOC is an Euler-like
equation, reflecting that the planner uses public debt to smooth out the cost of resources across
time.

5.5 Identification of weights

Our estimation involves identifying the SWF weights such that a Ramsey planner endowed with
this SWF optimally selects the observed fiscal system and aggregate allocation of a given country.
More precisely, we follow the identification strategy of Definition 2 to estimate the social weights
(ωy)y∈Y of the SWF SWF0.

Fiscal policy is composed of five instruments (τK , τ c, B, κ, τ), but these five instruments
actually impose only two constraints on social weights. Indeed, consumption taxes τ c are
redundant, as explained above (see Appendix C.1 for the details). Second, the public debt FOC,
provided in equation (79) of Appendix C.2, imposes a steady-state value on the before-tax real
interest rate 1 + r̃ = 1/β, but does not restrict the social weights. Therefore, this means that
the instruments (τK , τ c, κ, τ) actually imply three FOCs. One of them is used to pin down the
Lagrange multiplier of the governmental budget constraint µt. The two remaining FOCs imply
the two linear constraints on the SWF weights.

The identification strategy of Definition 2 can thus be readily applied with three constraints:
the two linear constraints coming from the Ramsey FOCs and the normalization constraint.
We thus consider a parametric estimation, with three degrees of freedom that will be exactly
identified by the three constraints. We adopt the following functional form, which naturally
extend the one in Heathcote and Tsujiyama (2021):

∀y ∈ Y, logωy := ω̄0 + ω̄1 log(y) + ω̄2(log(y))2, (47)

where (ω̄i)i=1,...,3 are the three free parameters.

5.6 Solution method and algorithm

The Ramsey problem discussed in Section 5.3 involves a joint distribution across wealth and
Lagrange multipliers. This high-dimensional object raises a number of difficulties for the resolution
of the Ramsey program. We rely on the truncation method, that has already been used in recent
papers (LeGrand and Ragot, 2022b, 2023, 2024). We here improve on previous work to allow for
the estimation of the SWF with a utility function separable in consumption and labor, instead of
the GHH case considered in previous papers.

The basic idea is to construct a consistent finite state space representation of the model and
use it to compute the FOCs of the Ramsey planner. We then use the inverse optimal approach
to estimate the SWF.

More precisely, the solution method is based on the following steps.

1. We simulate the heterogeneous-agent model at the steady state, with realistic values for
the fiscal instruments and income and wealth inequalities. Standard solution techniques
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provide the steady-state distribution of wealth Λ(a, y) for any idiosyncratic state y ∈ Y
and asset holding a, as well as the policy rules for wealth, consumption, and labor supply
denoted by ga(a, y), gc(a, y) and gl(a, y), respectively.

2. We consider a given finite set H of histories for which the transition matrix is a Markov
matrix. The most intuitive set of histories is composed of all histories of a given length N .
If there are Y idiosyncratic states, there will be Y N truncated histories.

3. We consider a so-called truncated history yN := {y1, . . . , yN} in the setH, which corresponds
to agents experiencing yN over the last N periods. Using the distribution Λ(a, y1) and
the policy rules, we can compute the distribution of wealth, denoted Λ̃(a, yN ), for any
truncated history yN and asset holding a.

4. Using the distribution Λ̃, we can aggregate key individual quantities and equations to
express them in terms of truncated histories. For instance, the size of truncated history
yN (i.e., the measure of agents with recent history yN ) is SyN =

´∞
0 Λ̃(da, yN ), or the

per-capita consumption cyN =
´ +∞

0 gc(a, yN )Λ̃(da, yN )/SyN . Finally, average marginal
utility is

´ +∞
0 u′(gc(a, yN ))Λ̃(da, yN )/SyN := ξu

yN
u′(cyN ), where ξu

yN
captures both the

convexity of the marginal utility and the heterogeneity in the wealth distribution of agents
having the same history yN for the last N periods. The aggregation process thus generates
Y N budget constraints, Euler equations, and labor supply choices (see equations (92)–(94)
in Appendix D.1). This defines the truncated model.

5. We can compute the FOCs of the planner in the truncated model (see Appendix D.2).

6. We derive the two linear constraints on the SWF weights from the FOCs of the planner.
We use them as inputs in (20) for the identification strategy of Definition 2.

7. We consider the following functional form for the weights: ωy := eω̄0+ω̄1 log(y)+ω̄2(log(y))2 with
(ω̄i)i=1,...,3 being the parameters. We then apply the identification strategy of Definition 2.

8. Using some measure of political weights ωP,y, we determine the IWFs using the expression
(22) of the identification strategy of Definition 3.

The detailed derivations of these steps is performed in Appendix D. We consider 10 idiosyncratic
states and N = 5 as a benchmark, and thus 105 possible histories. The estimation process takes
less than 3 minutes, and we have checked that the results are robust to an increase in N . We
now provide the quantitative investigation, and further discuss the choice of the measures of the
political weights in Section 3.4.

6 Quantitative investigation

We first provide the calibrations reproducing the tax system and the wealth distribution in both
the US and France for the period 1995-2007. We then estimate the SWFs in both countries.
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6.1 Calibration

The US calibration

The estimation parameters are gathered in Table 3, and we detail below our calibration strategy.

Preference parameters. The period is a quarter. The discount factor is set to β = 0.992 to

match a realistic capital-to-output ratio. The period utility functions are u(c) = c1−γ − 1
1− γ and

v(l) = 1
χ

l
1
ϕ

+1

1
ϕ + 1

. We set the inverse of intertemporal elasticity to γ = 1.8 to match a realistic

wealth inequality for the targeted capital-to-output ratio. Furthermore, the Frisch elasticity for
labor is set to ϕ = 0.5, which is recommended by Chetty et al. (2011). We set the labor-scaling
parameter to χ = 0.0477, which implies normalizing the aggregate labor supply to 0.3.

Technology. The production function is of the Cobb-Douglas form and subsumes capital
depreciation: F (K,L, s) = sKαL1−α − δK. The capital share is set to the standard value,
α = 36%, while the depreciation rate is set to δ = 2.5%.

Idiosyncratic labor risk. Various estimations of the idiosyncratic process can be found in
the literature. The productivity follows an AR(1) process: log yt = ρy log yt−1 + εyt , with
εyt ∼IID N (0, σ2

y). The calibration features an persistence ρy = 0.99 and a standard deviation
σy = 0.0995, which is close to the estimates of Krueger et al. (2018). We discretize this AR(1)
process using the Tauchen (1986) procedure, with 10 states. This calibration implies a Gini index
of post-tax and transfers of 0.40, as in Table 1.

Taxes and government budget constraint. Fiscal parameters are calibrated based on the
computations by Trabandt and Uhlig (2011) reported in Table 1, with the exception of the
progressivity of the labor tax, which we computed ourselves and reported in Table 2. We recall
that their estimations for the US in the period 1995-2007 yield a capital tax of τK = 36% and
a consumption tax of τ c = 5%. In our estimation for the progressivity parameter, we obtain
τ = 0.16, which is close to the estimates in the literature (see Section 2 for the details of our
estimation).

Finally, we estimate the parameter κ such that it matches the public-spending-to-GDP ratio
of 15%. We obtain a value of κ = 0.85, which is close to the estimates of Ferriere and Navarro
(2023). With this fiscal system, the model generates a public-debt-to-GDP ratio equal to 63%,
which corresponds to the value reported in Table 1.

Additionally, the model performs well in replicating the ratios of consumption over GDP and
investment over GDP. The model predicts a consumption-to-GDP ratio of 58%, very close to its
empirical counterpart of 60% for the period 1995-2007. The investment-to-GDP ratio generated
by the model amounts to 27%, close to the empirical value of 25%. Finally, regarding inequalities,
the model generates a Gini index for post-tax income equal to 0.40, identical to its empirical
counterpart in Table 1. The Gini index for wealth is found to be 0.78, very close to its empirical
value of 0.77 in Table 1.

29



US France
Parameter Description Value Target or ref. Value Target or ref.
Preference parameters

β discount factor 0.992 K/Y = 2.7 0.996 K/Y = 3.1
u utility function · γ = 1.8 · γ = 1.8
ϕ Frisch elasticity 0.5 Chetty et al. (2011) 0.5 Chetty et al. (2011)
χ hours worked 0.33 Penn World Table 0.29 Penn World Table
α capital share 36% Profit Share, NIPA 36% Profit Share, INSEE
δ depreciation rate 2.5% Chetty et al. (2011) 2.5% Own calc., INSEE

Productivity parameters
σy std. err. prod. 0.10 Gini for income 0.06 Fonseca et al. (2023)
ρy autocorr. prod. 0.99 Gini for income 0.99 Fonseca et al. (2023)

Table 3: Parameter values.

We gather the model implications in Table 4. These implications show that our tax system
provides a good approximation of the income and wealth distribution in the US, and hence of the
redistributive effects of the US tax system. This confirms the results of Heathcote et al. (2017)
and Dyrda and Pedroni (2022).

French calibration

The calibration for France shares a number of similarities with the one for the US. We use the
same period and the same functional forms. For the sake of clarity, we mimic the structure of the
US calibration, even though our presentation is more streamlined. The calibration parameters
can be found, as those for the US, in Table 3.

Preference parameters. The discount factor is set to β = 0.996 and the Frisch elasticity for
the labor supply is still equal to ϕ = 0.5. We fix the scaling parameter to χ = 0.0228, which
implies an aggregate labor supply normalized to 0.3. It happens that the same risk-aversion
parameter γ = 1.8 is consistent with French statistics.

Technology and TFP shock. We keep the same production function: F (K,L, s) = sKαL1−α−
δK, with the same parameter values: α = 36% and δ = 2.5%.26

Idiosyncratic risk. The AR(1) productivity process is calibrated using ρy = 0.99 and σy =
0.0646. These values are in line with the estimates of Fonseca et al. (2023). As for the US
calibration, we discretize this process with 10 states.

Taxes and government budget constraint. We use the values summarized in Table 1 for
the French taxes, except for the labor tax that is progressive. We consider a capital tax of
τK = 35%, a progressivity parameter of τ = 0.23, and a consumption tax of τ c = 18%. This tax
system has realistic implications for the model. In terms of public finance, we use κ = 0.728 to

26We are keeping the same values as in the United States to emphasize that the differences in the SWFs are due
to differences in the fiscal systems and not due to different production functions.
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US France
Parameter Description Model Data Model Data
Public finance aspects
B/Y Public debt (%GDP) 63% 63% 60% 60%
G/Y Public spending (%GDP) 15% 15% 25% 24%

Total tax revenues (%GDP) 16% 26% 25% 40%
Aggregate quantities
C/Y Aggregate consumption (%GDP) 58% 60% 44% 45%
I/Y Aggregate investment (%GDP) 27% 25% 31% 31%

Inequality measures
Gini for post-tax income 40% 40% 28% 28%

Gini for wealth 78% 77% 68% 68%

Table 4: Model implications for key variables. Empirical values are discussed in Section 2 and
summarized in Table 1.

match the empirical public-spending-to-GDP of 24%. This implies a public-debt-to-GDP ratio
of 60%, which matches the value of Table 1. Regarding private consumption and investment,
the model generates aggregate private consumption equal to 44% of GDP, which is close to the
empirical counterpart of 45% estimated by Trabandt and Uhlig (2011) for the period 1995-2007,
while investment amounts to 31% of GDP, equal to its empirical counterpart. Finally, in terms
of inequalities, the model implies a Gini index for post-tax income of 0.28 and a Gini index for
wealth of 0.68. These two Gini values match their empirical counterparts of Table 1. Again, this
confirms that the tax system is empirically relevant.

6.2 Estimation of the SWFs

The estimation procedure follows the algorithm presented in Section 5.3 and the algebra of
Appendix D. For the simulations below, we consider a truncation length of N = 5, although
the main characteristic of the results do not change when we consider longer truncation lengths.
As there are 10 idiosyncratic productivity levels, the number of truncated histories amounts to
N tot = 105 = 100000.

As discussed in Section 5.5, the weights are obtained such that the FOCs of the planner are
exactly identified. We apply Algorithm of Section 5.6 and we obtain the following parametric
function for the US and France, respectively:

logω(y)us =− 0.25 + 1.06 log(y) + 0.22(log(y))2,

logω(y)fr =− 0.51 + 0.62 log(y) + 1.44(log(y))2.

In Figure 2, we plot the weights of the SWF as a function of the 10 productivity indices of
agents. We observe that in the US, the period weights increase with productivity level, whereas
for France they exhibit a U-shaped pattern, assigning higher weights to low-productivity agents
compared to those at the top of the productivity distribution.

In the US, agents with the highest weight in the population are those with the highest
productivity. In France, low-productivity agents have a higher weight than those with medium
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(a) United States (b) France

Figure 2: Parametric period weights as a function of productivity for the US and France.

(a) United States (b) France

Figure 3: Mean SMWWs per quintile as a function of the quintile of labor income in the United
States and in France.. See text for comments.

productivity. The high productivity agents have the highest weights.

Implied marginal weights

As discussed in Section 5.4, the public finance literature often considers the SMWWs, which
is the product of the social weights by the average marginal utility for each productivity level:
ωiū′i. Although the relevant concept for the planner in our environment is the SVL (see equation
(46)), it is useful to represent implied SMWWs, as they have been estimated for the US (e.g.,
Hendren, 2020). Figure 3 represents the mean SMWWs in each quintile of the labor income, as
a function of the labor income quintile. SMWWs are normalized such that they average to 1
across quintiles.

The shape of mean SMWWs is similar in both countries. The SMWWs are decreasing with
income quintile, except for the last quintile for which they are increasing. This shows that the
same shape for SMWWs can be consistent with very different SWF weights.

Interestingly, the shape for the US is similar to those estimated by Hendren (2020) using fiscal
data – to our knowledge, there is no such estimation for France. The SMWWs are found to be
decreasing with income quantile, except at the end of distribution, where they slightly increase.
Hendren’s weights for first quintile have a lower value than ours: They amount to 1.2, while ours
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are about 1.8. 27 This difference comes from the fact that low productivity agents have a very
high marginal utility in our case, as we do not take into account some money transfers, which
are captured in Hendren. Indeed, our fiscal system, although relevant for macroeconomics, is
very simple compared to the actual transfer scheme in the US.

Despite these differences, we consider that the similarity in the general shape is promising
and encouraging. It shows that heterogeneous-agent models can be consistent with the empirical
public finance literature.

6.3 Investigating the drivers of the weight differences between the US and
France

Before interpreting these weights, we use the previous methodology to investigate the drivers
behind the differing weights assigned to agents in the United States and France. The objective
of this section is to understand why the weights differ so much between France and US. We
decompose the differences along the three sources of heterogeneity between the two countries: (i)
the discount factor β; (ii) the fiscal system; (iii) the productivity process. Indeed, the calibrations
of the two countries only differ only these three lines.

We start with the role of the discount factor. In panel (a) of Figure 4, the red dashed line
represents the SWF weights as a function of productivity for the US calibration, except the
discount factor which is set to the French value. Compared to the original weights, there is a
slight increase in the weights for low productivity agents, but the overall shape remains similar:
higher weights are given to agents with higher productivity levels. Similarly, in panel (b), the
red dashed line plots the weights for France adopting the US discount factor. We observe that
the weights for low-productivity agents in France decrease, while those for high-productivity
agents increase. However, the discount factor alone does not fully account for the differences in
weights between the two countries. Overall, making agents and the planner more patient (i.e.,
increasing β) tends to increase the weights of low-productivity agents, and to decrease those of
high-productivity agents.

Second, we analyze the impact of fiscal systems. Panel (a) of Figure 4 shows the US weights
with the French tax system and the French β (orange dashed line). The weights for lower
productivity agents increase at the expense of those for higher productivity agents. Conversely, in
panel (b) of Figure 4, we plot the weights when France adopts the US tax system in addition to
the US β. The results mirrors those of the US: The weights for low-productivity agents decrease,
while those for high-productivity agents increase. This exercise illustrates the role of the fiscal
system. The French tax system, characterized by a higher progressivity and a greater inclination
to the reduction of inequality, contributes to increase the weights of lower productivity agents at
the expense of those of higher productivity ones. The role of the US tax system, which is more
Libertarian (as we will discuss below), has an opposite effect.

Finally, to fully uncover the differences in weights, we incorporate the French income process
into the US economy in addition to the French β and the French tax system. the resulting
weights then exactly replicate the French weights (blue line in panel (a) of Figure 4). This is a
mechanical result as in that case the modified US economy has the same calibration the baseline

27These different initial values also change the concavity of the SMWWs relationships.
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(a) United States (b) France

Figure 4: Change in the period weights for the United States and France due to different
preference parameters, tax systems, and income processes.

French economy. We observe the same result for France (panel (b)).
We analyze further the impact for the US of opting for the French tax system – and the other

way around. Figure 8 in Appendix E illustrates the role of the fiscal system on SWF weights,
utility, labor, and capital income. Adopting the French tax system in the US reduces labor
income for high-productivity agents, because it reduces labor supply incentives. Thus, it also
reduces reduces the utility of these high-productivity agents. This heavier labor taxation results
from lower weights assigned to high-productivity agents by the social planner. Conversely, the
progressive tax system boosts the consumption and the utility of low-productivity agents, and is
the result for their larger SWF weights. This experiment demonstrates that changes in the tax
system can rationalize changes in weights. For the US to increase weights for low-productivity
agents and decrease weights for high-productivity agents, adopting a more progressive labor tax
is effective. The relatively low labor tax in the US favors high-income/high-productivity agents.

6.4 A world where the US have the French SWF

We now compute the US fiscal system that makes SWF weights as close as possible to those of
France. The goal is to find a fiscal system in the US where the distance between the weights in
the modified US economy and the benchmark France economy is minimized. This exercise aims
to understand the role of social preferences in shaping the tax system, distinct from the influence
of technology and individual preferences.

We conduct the experiment as follows. We start from the calibration of the US: we consider
the preference parameters, the production function, and the productivity process of the US.
Independently of the fiscal scheme, this sets the steady-state value of the capital-to-output ratio.
We then iterate over the capital tax rate and the progressivity of the labor tax to minimize the
distance between the corresponding SWF weights and the French ones. We keep adjusting the
parameter κ, driving the labor tax level, to keep the government spending-to-output ratio equal
to its US counterpart. This means that for any fiscal policy, the main macroeconomic ratios
(capital-to-output, investment-to-output, aggregate consumption to output and public spending
to output) in the fictive economy are identical to those in the US.

There is subtlety in the computation of the distance between the SWF weights. On the one
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Figure 5: SWF weights for France (red dashed line) and for the United States with the tax
system that minimizes the distance to the French weights (blue line). The x-axis corresponds
the 10 productivity levels in France.

hand, the benchmark SWF weights of France correspond to the French productivity levels. On
the other hand, the weights we calculate in the fictive economy correspond to the US productivity
levels, as we are considering the productivity process of the US. To compute the distance, we
define the weights of the two economies for the same productivity levels. We therefore interpolate
the weights to obtain their values for both the US and the French productivity levels. The
objective we minimize is thus the Euclidean distance between the SWF weights computed for
French and US productivity levels.

The minimization yields a new fiscal system that corresponds to the “core” US economy
with the French SWF. We refer to this economy as the US with French SWF. Figure 5 plots
the weights of the US with French SWF and the weights of France as a function of the French
productivity levels. As can be seen, the minimization procedure is successful in finding a fiscal
system that allows the SWF weights of the two economies to be quite close to each other.

We report in Table 5 the values of the new fiscal system in the US with French SWF economy
(row US with French SWF). For the sake of comparison, we also report the fiscal system of the
(baseline) US and French economies (rows US and France).As can be seen from the Gini values,
the distribution of income and wealth of the US with French SWF is now much closer to their
French counterparts, and therefore less unequal than in the US.

Public debt
(%GDP)

τk (%) τ (%) κ (%) Gini post-tax
income

Gini
wealth

US 63 36 16 85 40 78
France 60 35 23 73 28 68

US with French SWF 299 9 57 71 27 63

Table 5: Comparison between the benchmark economies and the US economy with the French
SWF.

This reduction in equality mostly comes from the higher weight of low-productivity/low-
income agents. This higher weight translates into a much higher progressivity. The progressivity
indeed increases from 16% to 57%. We recall that the other “core” parameters, as well as the main
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a) United States b) France

Figure 6: Participation rates (in percent) as a function of annual income (expressed as a percentage
of average income). US data refer to the 2008 presidential election. Data for France are for the
2007 presidential election. The 100 on the x-axis is the average income in each country.

macro ratios (e.g., consumption-to-GDP, government spending-to-GDP, investment-to-GDP)
remain the same as in the benchmark US economy. In particular, the pre-tax interest rate is kept
at its optimal value, which is the inverse of the discount factor. Because of the labor taxation,
the labor supply falls, which means that the capital also falls to keep the capital-to-labor ratio
constant. However, agents still have the US productivity levels, which makes them overall save
more than in France. This requires an increase in public debt to absorb the excess savings.

This higher progressivity is detrimental to high-productivity agents. However, they have a
quite a large weight in the French SWF. To partly offset for those agents the large progressivity
increase, the capital tax is lowered. This lower capital tax also tend to boost aggregate savings,
and hence also contributes to the increase of public debt. Ultimately, the middle class suffers
from the higher progressivity and does not benefit much from the lower capital tax, explaining
that they have the lowest weights in the population.

This increase in public debt and the decrease in capital taxes requires an increase in the labor
tax to compensate for the loss in tax returns – as this instrument is adjusted to keep the public
spending-to-GDP ratio unchanged.

6.5 Identification of IWFs

We now derive the estimated IWFs from the estimated SWF for each country. We follow the
algorithm of Section 5.6, which relies on the estimation strategy of 3 of Section 4.4. The first step
is to estimate the political weights ωP of the various groups of agents. To approximate them, we
rely on voter turnout in major elections as a function of average income. We thus follow the
political economy literature, which uses the turnout inequality as a proxy for the evolution of
political inequality (see Cage, 2024 for a discussion). Other proxies, such as donations in the US,
are also considered in the political economy literature. However, political donations are very
small in France, and do not allow for a proper comparison between France and the US.

Figure 6 plots the participation rate in percent as a function of the annual income in the
US (panel a) and in France (panel b). For each country, the annual income is expressed as a
percentage of the average annual income of the country.28 In the US, average income is $ 51726,

28US data are taken from Table 8 the Current Population Survey of November 2008 of the U.S. Census Bureau.
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(a) US (b) France

Figure 7: IWF weights (measured as politically-weighted factors (ωP,yπyωy,ỹ)y,ỹ ) for the US and
France. Actual productivity is the productivity y of the agents, while Considered productivity is
the productivity ỹ of the agents under consideration.

while it is 31093€ for France (both in 2007). We observe that the participation rate is increasing
and concave in income for both countries. Our identification assumption is that the ratio of
participation rates between income groups identifies the ratio of political weights. Formally:
ωP,y
ωP,ỹ

= Party
Partỹ

, where Party is the participation rate of income group y, which is interpolated from
Figure 6. As a consequence, the shape of political weights follow the shape of participation rates.
The higher average participation rate in France compared to the US is not reflected in political
weights.

With these political weights, we can calculate the IWFs of equation (22) in Definition 3. The
results are plotted in Figure 7, where the left panel (a) is for the US and the right panel (b) is for
France. More precisely, we report the politically-weighted factors given by agents of productivity
y (Actual productivity) to agents of productivity ỹ (Considered productivity). The politically-
weighted factors on the z-axis are equal to the value of ωP,yπyωy,ỹ for all y, ỹ = 1, . . . , 10. As
explained in Section 4.4, these factors have a simple interpretation: The larger the factor factors
ωP,yπyωy,ỹ, the more agents y affect the valuation of the planner for agents ỹ.

First, in both countries, the diagonal features high weights, reflecting that the self-interest
motive dominates the altruistic one: Agents mostly care about their own productivity.29 The
diagonal weights are also increasing with productivity in both countries, which mirrors the higher
political weight of high-productivity agents. In the US, the increase is steeper than in France
and diagonal weights reach higher values than in France, because SWF weights are also higher.
In consequence, the most productive agents have the highest impact in social preferences, and
this is especially true for the US. This is consistent with the results of Section 6.2.

Second, out of the diagonal, the US weights exhibit an increasing pattern in ỹ for each
productivity level y. This is especially true for middle class agents, corresponding to intermediate

French data are taken from IPSOS data for participation rates as a function of occupations and DADS 2007 to
obtain the annual income for each occupation.

29We recall that equation (22) implies πyωP,yω̂yy = 1 + πy(ωP,y)2∑
ỹ∈Y∞

πỹ(ωP,ỹ)2 (ωy − 1).
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values of y, who have the largest share in the population. Such a shape has been qualified of
Libertarian for the welfare functions in Section 3.4: higher weights are attributed to the most
productive agents. Third, out of the diagonal, the French weights exhibit a U-shape pattern,
consistent with the finding of 6.2 for the French SWF. Hence, the French welfare functions are
Egalitarian for low level of productivity but Libertarian for high productivity levels.

7 Conclusion

We propose a methodology to identify the Social Welfare Function (SWF) and Individual Welfare
Functions (IWFs) from the empirical wealth and income distributions and the actual tax structure.
We implement it both for France and the US. Using four fiscal instruments – consumption,
capital and progressive labor taxes, and public debt – we have estimated the SWFs in the two
countries and showed that they differ from each other. The SWF for France puts a higher weight
to low-productivity agents and is less heterogeneous than that of the US, while the US SWF has
an increasing shape in productivity with larger weights given to higher-productivity agents. The
US thus appear to be more Libertarian than France, while France is more Egalitarian than the
US, especially for low income levels. These results pave the way for future research, particularly
regarding the stability of social preferences over time. A key first step in this area is to investigate
the role of the SWF in the fiscal response to economic shocks, particularly in terms of business
cycle stabilization. Understanding this is essential for identifying the SWF by extracting insights
from short-term changes in the fiscal system.
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Appendix

A Proofs related to the SWF construction

A.1 Construction of the measure on the set of idiosyncratic histories Y∞

We can construct a probability space related to the set of infinite idiosyncratic histories, Y∞. We
summarize here the construction and further details can be found in LeGrand and Ragot (2022a,
Appendix B.3). Consistently with the main text, we will typically denote by yt an element of
Y∞. Such an element ỹt ∈ Y∞ can be described as a left-infinite sequence:

ỹt = (. . . , y−k(ỹt), . . . , y−1(ỹt), y0(ỹt)),

where each y−k : Y∞ → Y is a coordinate function returning the idiosyncratic state k periods
ago. For the sake of simplicity, and as in the main text, we will denote by yts := y−(t−s)(yt) for
any s ≤ t the state in date s, which is t− s periods ahead of date t.

We define L(yt) the past of history yt – which discards the current state ytt:

L(yt) = (. . . , ytt−k, . . . , ytt−1).

Consistently with the main text, we also denote by yt−1,t the past history of yt: yt−1,t = L(yt).
We can then define the cylinder sets Ck(A) for any k ≥ 1 and any A ⊂ Yk as:

Ck(A) = {yt ∈ Y∞ : (ytt−k+1, . . . , y
t
t) ∈ A}.

The cylinder set Ck(A) is the subset of Y∞ containing all idiosyncratic histories whose truncation
of length k belongs to A. We then define C0 as the set of all cylinder sets, which can be shown
to be a field (Billingsley, 2012, Section 2). We denote by F := σ(C0) the cylindrical σ-algebra
generated by C0, and we define the set function µ : C0 → R from the transition matrix Π and the
stationary vector π, such that for any k ≥ 2 and any A ⊂ Yk:µ(Ck(A)) = ∑

(y−k+1,...,y0)∈A πy−k+1Πy−k+1y−k+2 . . .Πy−1y0 for any k ≥ 2 and A ⊂ Yk,

µ(C1(A)) = ∑
y0∈A πy0 for any A ⊂ Y.

(48)

Finally, we can state the following lemma.

Lemma 1 The triplet (Y∞,F , µ) is a probability space.

Proof. A proof can be found in Billingsley (2012, Section 2). The key part of the proof is to
extend the measure µ defined on C0 to a measure defined on σ(C0) = F . A consequence of
Lemma 1 is that µ(Y∞) = 1, or

´
yt∈Y∞ µ(dyt) = 1.

A.2 The conditional measure

To lighten formulas, for any (y−k+1, . . . y0) ∈ Yk, we define y−k+1:0 := (y−k+1, . . . , y0) the vector
of length k, containing elements whose indices range from −k+1 to 0. Similarly, for any ỹt ∈ Y∞,
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ỹt(t−k+1:t) = (ỹtt−k+1, . . . , ỹ
t
t) is the vector of the k last realization of ỹt. We define µ1 by:

µ1(C1(Y1)|ỹt) =
∑

yt+1∈Y1

Πỹttyt+1 , for any Y1 ⊂ Y, (49)

∀k ≥ 2, µ1(Ck(Yk)|ỹt) =
∑

y(t−k+2):t+1∈Yk

Πỹttyt+11y(t−k+2):t=ỹtt−k+2:t
, for any Yk ⊂ Yk, (50)

where for any elements x, x̃ of the same set, 1x=x̃ = 1 if x = x̃ and 1x=x̃ = 0 otherwise. Intuitively,
the expression in (50) sums over all possible vectors y(t−k+2):t+1 of length k, the probability to
switch from ỹt to an history ending up in y(t−k+2):t+1. The latter probability is equal to the
probability to switch from ỹtt to yt+1, provided that ỹt and y(t−k+2):t are compatible (i.e., the
k− 1 last realization of ỹt equals y(t−k+2):t). Note that we could also write: 1y(t−k+2:t)=ỹt(t−k+2:t)

=∏k−2
j=0 1yt−j=ỹtt−j .

Lemma 2 For any ỹt ∈ Y∞, the set function C ∈ C0 7→ µ1(C|ỹt) is a pre-measure.

Proof.
In the remainder of the proof, we set ỹt ∈ Y∞. As a preliminary, we state two properties

that we will use extensively below:

– For all k′ ≥ k ≥ 1, for all Yk ⊂ Yk, for all Y ′k′−k ⊂ Yk
′−k:∑

y(t−k′+2):t+1∈Y ′k′−k×Yk

Πỹttyt+11y(t−k′+2):t=ỹt(t−k′+2):t
= (51)

∑
y(t−k+2):t+1∈Yk

(
Πỹttyt+11y(t−k+2):t=ỹt(t−k+2):t

×

∑
y(t−k′+2):(t−k+1)∈Y ′k′−k

1y(t−k′+2):(t−k+1)=ỹt(t−k′+2):(t−k+1)

)

– For all k′ ≥ k ≥ 0: ∑
yt−k′:t−k∈Yk

′−k+1

1yt−k′:t−k=ỹt
t−k′:t−k

= 1. (52)

In the remainder they will be referred to by their equation numbering. The proof of (52) is
straightforward and comes from the fact that (ỹtt−k′ , . . . , ỹtt−k) is a unique element of the set
Yk′−k+1. For the proof of (51), we denote by Sk,k′ the left hand side. We have:

Sk,k′ =
∑

y(t−k+2):t+1∈Yk

∑
y(t−k′+2):(t−k+1)∈Y ′k′−k

(
Πỹttyt+1× (53)

1y(t−k+2):t=ỹt(t−k+2):t
1y(t−k′+2):(t−k+1)=ỹt(t−k′+2):(t−k+1)

)
where we have used the properties of a sum on a product space and the fact that (x, y) = (x′, y′)
iff x = x′ and y = y′ (where (x, x′) and (y, y′) are two pairs of vectors of the same length). Then
we can factorize Πỹttyt+1 and 1y(t−k+2):t=ỹt(t−k+2):t

in (53), as they are independent from the sum
over y(t−k′+2):(t−k+1) ∈ Y ′k′−k. We then readily obtain (51).
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We now go back to the proof of Lemma 2. Three properties need to hold: (i) well-defined,
(ii) (countably) additive, (iii) µ1(Y∞|ỹt) = 1 for all ỹt ∈ Y∞.

For Point (i), we need to check that µ1(Ck(Yk)|ỹt) = µ1(Ck′(Yk
′−k × Yk)|ỹt) for all k′ ≥ k.

We have for k ≥ 2:

µ1(Ck′(Yk
′−k × Yk)|ỹt) =

∑
y(t−k′+2):t+1∈Yk

′−k×Yk

Πỹttyt+11y(t−k′+2):t=ỹt(t−k′+2):t
,

=
∑

y(t−k+2):t+1∈Yk

Πỹttyt+11y(t−k+2):t=ỹt(t−k+2):t
= µ1(Ck(Yk)|ỹt), (54)

where the first and last equalities use the definition of µ1, and the second the combination of
properties (51) and (52).

We need to prove the result for k = 1. We have for k′ ≥ 1:

µ1(Ck′(Yk
′−1 × Y1)|ỹt) =

∑
yt+1∈Y1

Πỹttyt+1

( ∑
y(t−k′+2):t∈Yk

′−1

1y(t−k′+2):t=ỹt(t−k′+2):t

)
,

=
∑

yt+1∈Y1

Πỹttyt+1 = µ1(C1(Y1)|ỹt),

where the first equality combines the definition of µ1 and (51), the second uses the property (52),
and the last the definition of µ1.

For point (ii), we consider two disjoint cylinders, Ck(Yk) and Ck′(Y ′k′) (k′ ≥ k, Yk ⊂ Yk and
Y ′k′ ⊂ Yk

′). Since both cylinders are disjoint, then Yk′−k × Yk and Y ′k′ are disjoint too. We
deduce that:

µ1(Ck(Yk) ∪ Ck′(Y ′k′)|ỹt) = µ1(Ck′((Yk
′−k × Yk) ∪ Y ′k′)|ỹt),

=
∑

y(t−k′+2):t+1∈(Yk′−k×Yk)∪Y ′
k′

Πỹttyt+11y(t−k′+2):t=ỹt(t−k′+2):t
,

=
∑

y(t−k′+2):t+1∈(Yk′−k×Yk)

Πỹttyt+11y(t−k′+2):t=ỹt(t−k′+2):t

+
∑

y(t−k′+2):t+1∈Y ′k′

Πỹttyt+11y(t−k′+2):t=ỹt(t−k′+2):t
,

=
∑

y(t−k+2):t+1∈Yk

Πỹttyt+11y(t−k+2):t=ỹt(t−k+2):t

+
∑

y(t−k′+2):t+1∈Y ′k′

Πỹttyt+11y(t−k′+2):t=ỹt(t−k′+2):t
,

= µ1(Ck(Yk)|ỹt) + µ1(Ck′(Y ′k′)|ỹt),

where the first equality uses the algebra property of cylinder sets, the second the definition of
µ1, the third the property that Yk′−k × Yk and Y ′k′ are disjoint, the fourth the combination of
properties (51) and (52), and the last the definition of µ1 twice. We have thus proved that
µ1(·|ỹt) is finitely additive.
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For point (iii), let k ≥ 2. We have:

µ1(Ck(Yk)|ỹt) =
∑

yt+1∈Y
Πỹttyt+1

∑
y(t−k+2):t∈Yk−1

1y(t−k+2):t=ỹt(t−k+2):t
,

=
∑

yt+1∈Y
Πỹttyt+1 = 1,

where the first equality uses the definition of µ1 and (51), the second property (52), and the
third the property of the transition matrix Π. We thus deduce that µ1(Y∞|ỹt) = 1.

We have proven that µ1(·|ỹt) is a finitely additive probability measure on the algebra C0.
Billingsley (2012, Theorem 2.3) states that any finitely additive probability measure on the
cylinder algebra is countably additive. We thus conclude that µ1 is a countably additive
probability measure on C0 and is thus a pre-measure on C0.

We then prove the following lemma. We recall that F the cylindrical σ-algebra, σ(C0),
generated by C0.

Lemma 3 For all ỹt ∈ Y∞, the function µ1(·|ỹt) uniquely extends to a measure on F .

The proof is similar to the one showing the extension of µ as a pre-measure on C0 to a measure
on F . It relies on the Hahn-Kolmogorov theorem (Billingsley 2012, Theorem 3.1). See LeGrand
and Ragot (2022a, Lemma 3 in Section B.3).

Finally we can state the following lemma, showing that µ1 is a conditional measure.

Lemma 4 For all ỹt ∈ Y∞ and for all F ∈ F :
ˆ
ỹt∈Y∞

µ1(F |ỹt)µ(dỹt) = µ(F ) (55)

.

Proof. We first prove (55) for F being a cylinder set.
First, let Y1 ⊂ Y and consider C1(Y1). We have:

ˆ
ỹt∈Y∞

µ1(C1(Y1)|ỹt)µ(dỹt) =
ˆ
ỹt∈Y∞

∑
yt+1∈Y1

Πỹttyt+1µ(dỹt),

=
∑
ỹtt∈Y

πỹtt

∑
yt+1∈Y1

Πỹttyt+1 ,

=
∑

yt+1∈Y1

∑
ỹtt∈Y

πỹttΠỹttyt+1 ,

=
∑

yt+1∈Y1

πy0 = µ(C1(Y1)),

where the first equality comes from the definition (49) of µ1, the second from the fact that the
integral is actually carried over a cylinder set of the form C1(Y) and from the definition (48) of
µ, the third from the permutation of finite sums, the fourth from the fact that π is stationary
(∑y∈Y πyΠyy′ = πy′), and the last from the definition (48) of µ.
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Second, let Yk ⊂ Yk and consider Ck(Yk). We have:
ˆ
ỹt∈Y∞

µ1(Ck(Yk)|ỹt)µ(dỹt)

=
ˆ
ỹt∈Y∞

∑
y(t−k+2):t+1∈Yk

Πỹttyt+11y(t−k+2):t=ỹt(t−k+2):t
µ(dỹt),

=
∑

ỹt(t−k+2):t∈Y
k−1

πỹt
t−k+2

Πỹt
t−k+2ỹ

t
t−k+3

. . .Πỹtt−1ỹ
t
t

∑
y(t−k+2):t+1∈Yk

Πỹttyt+11y(t−k+2):t=ỹt(t−k+2):t
,

=
∑

y(t−k+2):t+1∈Yk

∑
ỹt(t−k+2):t∈Y

k−1

πỹt
t−k+2

Πỹt
t−k+2ỹ

t
t−k+3

. . .Πỹtt−1ỹ
t
t
Πỹttyt+11y(t−k+2):t=ỹt(t−k+2):t

,

=
∑

y(t−k+2):t+1∈Yk

πyt−k+2Πyt−k+2yt−k+3 . . .Πyt−1ytΠytyt+1 = µ(Ck(Yk)),

where the first equality comes from the definition (50) of µ1, the second from the fact that the
integral is actually carried over a cylinder set of the form Ck−1(Yk−1) and from the definition
(48) of µ, the third from the permutation of finite sums, the fourth from the fact that all terms
in the sum over ỹt(t−k+2):t ∈ Y

k−1 are zero but the one for ỹt(t−k+2):t = y(t−k+2):t, and the last
from the definition (48) of µ. This proves (55) on C0. Since cylinder sets are a generating family
of F and a π-system, the equality (55) also holds on σ(C0) = F .

We finally prove the following lemma. It justifies that in the main text, we define µ1 as
µ1(dyt+1|ỹt) = Πỹtty

t+1
t+1
δỹt(dyt).

Lemma 5 For all ỹt ∈ Y∞ and for all C ∈ C0, we have:

µ1(C|ỹt) =
ˆ
yt+1∈C

Πỹtty
t+1
t+1
δỹt(L(dyt+1)),

where δỹt is the Dirac mass in ỹt.

Proof. Let Yk ⊂ Yk for some k ≥ 1.
For k = 1, we have:

ˆ
yt+1∈C1(Y1)

Πỹtty
t+1
t+1
δỹt(L(dyt+1)) =

ˆ
(yt,yt+1)∈Y∞×Y1

Πỹttyt+1δỹt(dy
t),

=
∑

yt+1∈Y1

Πỹttyt+1

ˆ
yt∈Y∞

δỹt(dyt),

=
∑

yt+1∈Y1

Πỹttyt+1 = µ1(C1(Y1)|ỹt),

where the first equality comes from using C1(Y1) = Y∞ × Y1, the second from using the Fubini
theorem (we consider σ-finite measure spaces and (ỹt, yt+1) ∈ Y∞ × Y1 7→ Πỹttyt+1δỹt(dy

t) is
integrable), the third the property of Dirac mass, and fourth the definition of µ1.

For k ≥ 2, we have:
ˆ
yt+1∈Ck(Yk)

Πỹtty
t+1
t+1
δỹt(L(dyt+1)) (56)

=
ˆ

(yt−k+1,y(t−k+2):t+1)∈Y∞×Yk
Πỹttyt+11y(t−k+2):t=ỹt(t−k+2):t

δL(k−1)(ỹt)(dyt−k+1), (57)
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where L(k−1)(·) is k-iterate of the shift operator L: L(k−1)(ỹt) = (. . . , ỹtt−k, ỹtt−k+1). To write
equality (56), we have used that Ck(Yk) = Y∞ × Yk and the fact that δỹt(Yk−1 × C) =∑
y(t−k+2):t∈Yk−1

1y(t−k+2):t=ỹt(t−k+2):t
δL(k−1)(ỹt)(C) for all C ∈ C0 and Yk−1 ⊂ Yk−1. Hence the

two measures coincide on C0 and are also σ- finite. Using Fubini and the property of a Dirac
mass, we obtain from (56):

ˆ
yt+1∈Ck(Yk)

Πỹtty
t+1
t+1
δỹt(L(dyt+1)) =

∑
y(t−k+2):t+1∈Yk

Πỹttyt+11y(t−k+2):t=ỹt(t−k+2):t
,

= µ1(Ck(Yk)|ỹt),

where the last equality comes from the definition of µ1. This concludes the proof.

A.3 Proof of Equality 14

We consider an agent whose individual preferences are represented by a utility function V :
Y∞ → R. The allocation is subsumed. Let yt ∈ Y∞. The representation result of equation (13)
becomes, after splitting the sum for s = 0 and s ≥ 1:

V (yt) = U(yt) + β
∞∑
s=1

ˆ
yt+s∈Y∞

βs−1U(yt+s)µs(dyt+s|yt). (58)

Using the definition of µs given in Section 4.1 and Bayes rule, we have, for all s ≥ 1:

µs(dyt+s|yt) =
ˆ
yt+1∈Y∞

µs−1(dyt+s|yt+1)µ1(dyt+1|yt). (59)

In words, it means that the probability of transitioning from yt to yt+s in s periods is equal to
the product of the probabilities of transitioning from yt to yt+1 (in 1 period) and from yt+1 to
yt+s (in s− 1 periods), summed over all possible histories yt+1. Using (59), the expression of V
in (58) becomes:

V (yt) = U(yt) + β
∞∑
s=1

ˆ
yt+s∈Y∞

βs−1U(yt+s)

×
ˆ
yt+1∈Y∞

µs−1(dyt+s|yt+1)µ1(dyt+1|yt).

Since all function are integrable, we can use the Fubini theorem twice, to swap the order of
integrals and then of the sum and of the integral on yt+1 ∈ Y∞. We obtain:

V (yt) = U(yt)+ (60)

+β
ˆ
yt+1∈Y∞

{ ∞∑
s=1

ˆ
yt+s∈Y∞

βs−1U(yt+s)µs−1(dyt+s|yt+1)
}
µ1(dyt+1|yt).

The term between curly braces is V (yt+1) using (13) applied to t + 1. The previous equality
becomes:

V (yt) = U(yt) + β

ˆ
yt+1∈Y∞

V (yt+1)µ1(dyt+1|yt).
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which gives the representation (14) using the notation Eyt+1
[
V (yt+1)|yt

]
=
´
yt+1∈Y∞ V (yt+1)µ1(dyt+1|yt).

for the conditional expectation.

A.4 Proof of Proposition 1

Using the definition (16), the expression (17) of the SWF becomes:

SWF =
ˆ
yt∈Y∞

ωP (yt)
ˆ
ỹt∈Y∞

V̂ (yt, ỹt)µ(dỹt)µ(dyt),

which can be further simplified using the expression (15) of V̂ :

SWF =
ˆ
yt∈Y∞

ωP (yt)
ˆ
ỹt∈Y∞

∞∑
s=0

ˆ
ŷt+s∈Y∞

βsω̂(yt, ŷt+s)U(ŷt+s)µs(dŷt+s|ỹt)µ(dỹt)µ(dyt).

=
ˆ
yt∈Y∞

ωP (yt)
∞∑
s=0

ˆ
ỹt∈Y∞

ˆ
ŷt+s∈Y∞

βsω̂(yt, ŷt+s)U(ŷt+s)µs(dŷt+s|ỹt)µ(dỹt)µ(dyt).

Since all functions under consideration are positive and measurable and since it is assumed that
SWF <∞, we can use the Fubini theorem to permute the order of integrals and obtain:

SWF =
∞∑
s=0

ˆ
ŷt+s∈Y∞

βs
[ˆ

yt∈Y∞
ωP (yt)ω̂(yt, ŷt+s)µ(dyt)

]
U(ŷt+s)

×
[ˆ

ỹt∈Y∞
µs(dŷt+s|ỹt)µ(dỹt)

]
.

A straightforward extension of Lemma 4 for µs (for any s ≥ 1) yields:
´
ỹt∈Y∞ µs(dŷ

t+s|ỹt)µ(dỹt) =
µ(dŷt+s). Using the definition (19) of the weights ω, we deduce:

SWF =
∞∑
s=0

ˆ
ŷt+s∈Y∞

βsω(ŷt+s)U(ŷt+s)µ(dŷt+s),

which proves Proposition 1.
As a final remark, observe that by splitting the sum over s into s = 0 and a sum for s ≥ 1, we

also obtain the following expression for SWF : SWF =
´
yt∈Y∞ ω(yt)U(yt, A)µ(dyt) + β SWF .

A.5 Proof of Proposition 2

We recall the expression of the SWF when the allocation is explicit:

SWF (A) =
∞∑
t=0

βt
ˆ
yt∈Y∞

ω(yt)U(yt, A)µ(dyt).

Let assume that the weights are non-negative and consider two allocations A and A’ such that
A element-wise dominates A′. We thus have U(yt, A) ≥ U(yt, A′) for all yt. The non-negativity
of weights implies that: βtω(yt)U(yt, A) ≥ βtω(yt)U(yt, A′) for all yt, which after integration
and sum yields SWF (A) ≥ SWF (A′).

Let us assume that SWF (A) ≥ SWF (A′) for any pair of allocations A and A’ such that A
element-wise dominates A′. Let us assume that the weights are strictly negative on a subset
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X ⊂ Y∞ of positive measure. We consider an allocation A′. We construct the allocation A

such that A and A′ coincide on Y∞ \ X and A strictly dominates A′ on X . We thus have
U(yt, A) = U(yt, A′) for all yt ∈ Y∞ \ X and U(yt, A) > U(yt, A′) for all yt ∈ X : A element-wise
dominates A′. We thus deduce that:

ˆ
yt∈Y∞

ω(yt)(U(yt, A)− U(yt, A′))µ(dyt) =
ˆ
yt∈Y∞\X

ω(yt)(U(yt, A)− U(yt, A′))µ(yt)

+
ˆ
yt∈X

ω(yt)(U(yt, A)− U(yt, A′))µ(yt),

=
ˆ
yt∈X

ω(yt)(U(yt, A)− U(yt, A′))µ(yt),

< 0,

where the first equality is a split of the integral over two disjoint sets, the second comes from
U(yt, A) = U(yt, A′) on Y∞ \ X , and the third from U(yt, A) > U(yt, A′) and ω(yt) < 0 on X .

Summing the previous discounted inequality implies SWF (A) < SWF (A′), which is a
contradiction. We must thus have positive weights. This concludes the proof.

A.6 Proof of equation (22) in Definition 3

The program in Definition 3 is:

(ω̃ỹy)ỹ,y =argmin(ω̂ỹy)ỹ,y
∑

(y,ỹ)∈Y∞2

πỹ

(
ω̂ỹy −

1y=ỹ
ωP,yπy

)2

,

s.t. ωy =
∑
ỹ∈Y∞

πỹωP,ỹω̂ỹy (y ∈ Y). (61)

We denote by 2λy the Lagrange multiplier to the constraint of equation (61) for y ∈ Y. We
obtain the following Lagrangian:

L = 1
2

∑
(y,ỹ)∈Y∞2

πỹ

(
ω̂ỹy −

1y=ỹ
ωP,yπy

)2

−
∑
y∈Y

λy

 ∑
ỹ∈Y∞

πỹωP,ỹω̂ỹy − ωy

 .
Computing the derivative with respect to ω̂ỹy yields the following FOC:

ω̂ỹy = 1y=ỹ
ωP,yπy

+ λyωP,ỹ.

Using the constraint of equation (61), we deduce:

λy = ωP,ỹ∑
ỹ∈Y∞ πỹ(ωP,ỹ)2 (ωy − 1),

which finally implies equation (A.6).

B Competitive equilibrium

We provide a formal definition of a competitive equilibrium.
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Definition 4 (Competitive equilibrium) A sequential competitive equilibrium is a collection
of individual allocations (ci,t, li,t, ai,t, νi,t)t≥0,i∈I , of aggregate quantities (Kt, Lt, Yt)t≥0, of price
processes (wt, rt, w̃t, r̃t)t≥0, and of fiscal policies (τ ct , τKt , τt, κt, Bt)t≥0, such that, for initial con-
ditions and initial values of capital stock and public debt verifying K−1 +B−1 =

´
i ai,−1`(di), we

have:

1. given prices, the functions (ci,t, li,t, ai,t, νi,t)t≥0,i∈I solve the agent’s optimization program
in equations (30)–(32);

2. financial, labor, and goods markets clear at all dates: for any t ≥ 0, equation (35) holds;

3. the government budget is balanced at all dates: equation (28) holds for all t ≥ 0;

4. factor prices (wt, rt, w̃t, r̃t)t≥0 are consistent with condition (24) and post-tax definitions
(27).

A steady-state competitive equilibrium is a competitive equilibrium for which the joint
distribution of agents’ decisions (c, l, a, ν), aggregate quantities K,L, Y , prices w, r, w̃, r̃, and
fiscal policy (τ c, τK , τ, κ,B) are time-invariant.

C The Ramsey program 3

C.1 Reformulating the Ramsey program

We now reformulate the Ramsey problem. We define the following variables:

ãi,t := ai,t
1 + τ ct

, (62)

Wt := wt
1 + τ ct

, (63)

Rt := (1 + rt)(1 + τ ct−1)
1 + τ ct

, (64)

which represents the asset choices in (62), the wage rate in (63), and the interest rate in (64).
With this notation, the agent’s budget and credit constraints become:

ci,t + ãi,t = Wt(yi,tli,t)1−τt +Rtãi,t−1, (65)

ãi,t ≥ −
a

1 + τ ct
:= −ã. (66)

Since taxes and prices are considered as given by agents, we can equivalently state their opti-
mization program using the notation (62)–(64) and the constraints (65) and (66), rather than
the original notation and the constraints (31) and (32). This modifies Euler equations (33)–(34)
as follows:

u′(ci,t) = βEt
[
Rt+1u

′(ci,t+1)
]

+ νi,t,

v′(li,t) = (1− τt)Wtyi,t(yi,tli,t)−τtu′(ci,t).
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We now turn to the governmental budget constraint. We further define:

B̃t := Bt
(1 + τ ct ) , (67)

Ãt := At
1 + τ ct

. (68)

and
B̂t := (1 + τ ct )B̃t − τ ct Ãt, (69)

With these new definitions, the financial market equilibrium given by (43) holds, as we have
Ãt =

´
i ã(i)l(di).

Using the government budget constraint defined in (28), we have:

Gt + (1 + rt)Bt−1 + wt

ˆ
i
(yi,tli,t)1−τt`(di) + rtKt−1 = τ ct Ct + F (Kt−1, Lt, st) +Bt.

Using the resource constraint Ct +Gt +Kt = F (Kt−1, Lt, st) +Kt−1, we obtain:

Gt + (1 + rt)Bt−1 + wt

ˆ
i
(yi,tli,t)1−τt`(di) + rtKt−1 =

τ ct (F (Kt−1, Lt, st)−Gt − (Kt −Kt−1)) + F (Kt−1, Lt, st) +Bt.

Divide both sides of the equation above by (1 + τ ct ) and obtain:

Gt + 1 + rt
1 + τ ct

Bt−1 + wt
1 + τ ct

ˆ
i
(yi,tli,t)1−τt`(di) + rt

1 + τ ct
Kt−1 =

− τ ct
1 + τ ct

(Kt −Kt−1) + F (Kt−1, Lt, st) + Bt
1 + τ ct

.

Using the definitions (63), (64), and (67):

Gt +RtB̃t−1 +Wt

ˆ
i
(yi,tli,t)1−τt`(di) + rt

1 + τ ct
Kt−1 = − τ ct

1 + τ ct
(Kt −Kt−1) + F (Kt−1, Lt, st) + B̃t.

We now substitute the expression of Kt and Kt−1. From (67) and (68), we have Kt−1 =
At−1 −Bt−1 = (1 + τ ct−1)(Ãt−1 − B̃t−1) and:

Gt +RtB̃t−1 +Wt

ˆ
i
(yi,tli,t)1−τt`(di) + rt(1 + τ ct−1)

1 + τ ct
(Ãt−1 − B̃t−1) =

τ ct (1 + τ ct−1)
1 + τ ct

(Ãt−1 − B̃t−1) + F (Kt−1, Lt, st)− τ ct (Ãt − B̃t) + B̃t.

Observe from (64) and (69) that rt(1 + τ ct−1)
1 + τ ct

= Rt−
1 + τ ct−1
1 + τ ct

and −τ ct (Ãt− B̃t) + B̃t = B̂t. This
yields:

Gt +RtB̃t−1 +Wt

ˆ
i
(yi,tli,t)1−τt`(di) + (Rt − (1 + τ ct−1))(Ãt−1 − B̃t−1) =

F (Kt−1, Lt, st) + B̂t.
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Finally, using (69) in period t− 1 (i.e., B̂t−1 = (1 + τ ct−1)B̃t−1 − τ ct−1Ãt−1) we get:

Gt +Wt

ˆ
i
(yi,tli,t)1−τt`(di) + (Rt − 1)Ãt−1 + B̂t−1 =

F (Kt−1, Lt, st) + B̂t.

Since the public debt can be freely chosen by the planner, it is equivalent for the planner to
choose B̂t rather than Bt.

The reformulated Ramsey program. We reformulate the the Ramsey program (70)–(76)
using the variables ãi,t, Wt, Rt, Ãt, B̂t introduced in (62)–(64) and (68)–(69). The program can
be expressed in post-tax prices Rt and Wt – taxes and pre-tax factor prices can be deduced
from the allocation and the post-tax price definitions. The following proposition summarizes the
reformulation of the Ramsey program.

Proposition 3 The Ramsey program (70)–(76) can be rewritten as:

max
(Wt,Rt,τt,B̂t,Ãt,Kt,Lt,(ci,t,li,t,ãi,t,νi,t)i)t≥0

SWF0, (70)

G+Wt

ˆ
i
(yi,tli,t)1−τt`(di) + (Rt − 1)Ãt−1 + B̂t−1 = F (Kt−1, Lt, st) + B̂t, (71)

for all i ∈ I: ci,t + ãi,t = Wt(yi,tli,t)1−τt +Rtãi,t−1, (72)

ãi,t ≥ −˜̄a, νi,t(ãi,t + ˜̄a) = 0, νi,t ≥ 0, (73)

u′(ci,t) = βEt
[
Rt+1u

′(ci,t+1)
]

+ νi,t, (74)

v′(li,t) = (1− τt)Wtyi,t(yi,tli,t)−τtu′(ci,t), (75)

Kt + B̂t = Ãt =
ˆ
i
ãi,t`(di), Lt =

ˆ
i
yi,tli,t`(di). (76)

C.2 Lagrangian and the FOCs of the Ramsey program

The Lagrangian associated to the Ramsey program (70)–(76) can be written as:

L = E0

∞∑
t=0

βt
ˆ
i
ωi,t(u(ci,t)− v(li,t))`(di)

− E0

∞∑
t=0

βt
ˆ
i
(λc,i,t −Rtλc,i,t−1)u′(ci,t)`(di)

− E0

∞∑
t=0

βt
ˆ
i
λl,i,t

(
v′(li,t)− (1− τt)Wtyi,t(yi,tli,t)−τtu′(ci,t)

)
`(di)

− E0

∞∑
t=0

βtµt

(
Gt + (1− δ)B̂t−1 + (Rt − 1 + δ)

ˆ
i
ãi,t−1`(di) +Wt

ˆ
i
(yi,tli,t)1−τt`(di)− Yt − B̂t

)
.
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where the value of νit is given by the complementary slackneww conditions (73) and (74), and
where we have

ci,t = −ãi,t +Rtãi,t−1 +Wt(yi,tli,t)1−τt , (77)

Yt =
( ˆ

i
ãi,t−1`(di)− B̂t−1

)α( ˆ
i
yi,tli,t` (di)

)1−α
. (78)

As a consequence, the instruments are: ãi,t, li,t, Wt, Rt, τt, and B̂t. Using the two previous
equations to substitute ci,t and Yt, he program of the planner is

max
(Wt,Rt,τt,B̂t,(li,t,ãi,t)i)t≥0

L

We now provide the first-order conditions of the planner and we present an alternative interpre-
tation of the Lagragian in the next section.

FOC with respect to public debt B̂t.

µt = βEt [(1 + r̃t+1)µt+1] . (79)

FOC with respect to savings choices ãi,t. We define the marginal social value of liquidity
for agent i at date t as:

ψi,t := ωi,tu
′(ci,t)−

(
λc,i,t −Rtλc,i,t−1 − λl,i,t(1− τt)Wt(yi,t)1−τt(li,t)−τt

)
u′′(ci,t), (80)

and ψ̂i,t := ψi,t−µt as the marginal social value of liquidity net of the cost for planner’s resources.
We obtain using (79):

ψ̂i,t = βEt
[
Rt+1ψ̂i,t+1

]
. (81)

FOC with respect to labor supply li,t . We define:

ψl,i,t := ωi,tv
′(li,t) + λl,i,tv

′′(li,t).

The FOC with respect to labor supply li,t is:

ψl,i,t = (1− τt)Wt(yi,t)1−τt(li,t)−τtψ̂i,t + µtFL,tyi,t − (1− τt)Wt(yi,t)1−τt(li,t)−τtλl,i,tτt
u′(ci,t)
li,t

.

FOC with respect to the wage rate Wt.

0 =
ˆ
j
(yj,tlj,t)1−τt

(
ψ̂j,t + λl,j,t(1− τt)u′(cj,t)/lj,t

)
`(dj).

FOC with respect to the interest rate Rt.

0 =
ˆ
j
(ψ̂j,tãjt−1 + λc,j,t−1u

′(cj,t))`(dj). (82)
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FOC with respect to progressivity τt.

0 =
ˆ
j
(yj,tlj,t)1−τt(ψ̂j,t + λl,j,t(1− τt)(u′(cj,t)/lj,t)) ln(yj,tlj,t)`(dj)

+
ˆ
j
λl,j,t(yj,tlj,t)1−τt(u′(cj,t)/lj,t)`(dj).

C.3 Expression of Lagrangian using a public finance representation

The Lagrangian can be written as

L = E0

∞∑
t=0

βt (Wt + µtBt)

with

Wt :=
ˆ
i

(
ωi,t(u(ci,t)− v(li,t))− (λc,i,t −Rtλc,i,t−1)u′(ci,t)

−λl,i,t
(
v′(li,t)− (1− τt)Wtyi,t(yi,tli,t)−τtu′(ci,t)

))
`(di)

Bt := Yt − B̂t −Gt − (1− δ)B̂t−1 − (Rt − 1 + δ)
ˆ
i
ãi,t−1`(di)−Wt

ˆ
i
(yi,tli,t)1−τt`(di)

The quantity Bt is the budget constraint of the government, whereas Wt is the aggregate
welfare taking account the possible general equilibrium effects generated by each agent’s choice,
and captured by individual Lagrange multipliers λc,i,t and λl,i,t. Note that if these multipliers
were 0, then Wt would only be the weighted welfare.

Considering an instrument Ik in period k (Ik can be public debt, interest rate labor tax or
its progressivity), the FOC of the Lagrangian with respect to Ik implies:

E0

∞∑
t=0

βtµt
dBt
dIk

+ E0

∞∑
t=0

βt
ˆ
∂Wt

∂Ik
`(di) = −E0

∞∑
t=0

βt
ˆ
∂Wt

∂ci,t

∂ci,t
∂Ik

`(di). (83)

SinceWt, Rt, τt only affect the current value of welfare and budget constraint (for It ∈ {Wt, Rt, τt},
∂Wt
∂Ik

= ∂Bt
∂Ik

= 0 if k 6= t), we have for any It ∈ {Wt, Rt, τt}:

µt =
ˆ
∂Wt

∂ci,t

−∂ci,t
∂It

dBt
dIt

+ 1
µt
∂Wt
∂It

`(di). (84)

It is then easy to compute the partial derivatives to check that we obtain the same expressions as
in Section C.2. For instance, we have ∂Wt

∂ci,t
= ψi,t and when the fiscal instrument is the post-tax

rate Rt: dBt
dRt

= −
´
i ãi,t−1`(di), ∂Wt

∂Rt
=
´
iRtλc,i,t−1u

′(ci,t), and ∂ci,t
∂Rt

= ãi,t−1. Then, (84) becomes:

µt =
ˆ
ψi,t

−ãi,t−1

−
´
i ãi,t−1`(di) + 1

µt

´
iRtλc,i,t−1u′(ci,t)

`(di),

which can be written as
´

(ψi,t − µt)ãi,t−1`(di) +
´
iRtλc,i,t−1u

′(ci,t) = 0, which is the FOC (82)
with ψ̂i,t = ψi,t − µt. The same derivations can be obtained for Rt, τt.

The instrument B̂t is a fiscal instrument that affects current and future budget constraints
but not welfare: ∂Wt

∂B̂k
= 0, for all k and ∂Bt

∂B̂t
= −1, ∂Bt+1

∂B̂t
= 1 + r̃t+1, and ∂Bτ

∂B̂t
= 0 if τ /∈
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{t, t+ 1}. As a consequence, the FOC (83) simplifies into0 E0[βtµt dBtdB̂t
+ βt+1µt+1

dBt+1
dB̂t

] = 0, or
−µt + βEt[µt+1(1 + r̃t+1)] = 0, which is FOC (79).

D Truncating the model and identification of Pareto Weights

D.1 The truncated model

The key step of the aggregation consists of assigning the same wealth and allocation to all agents
sharing the same idiosyncratic history over the recent past. The recent past is characterized
by a number of periods, called the truncation length and denoted N ; it is a parameter of
the model. This N -period history will be referred to as a truncated history. For an history
yt = {. . . , ytt−N , ytt−N+1, . . . , y

t
t−1, y

t
t}, this corresponds to the N -length vector denoted yN :=

{ytt−N , ytt−N+1, . . . , y
t
t−1, y

t
t}. To sum up, we can represent the truncated history of an agent i

whose idiosyncratic history is yt as:

yt = {. . . , ytt−N−2, y
t
t−N−1, y

t
t−N︸ ︷︷ ︸

ξ
yN

, ytt−N+1, . . . , y
t
t−1, y

t
t︸ ︷︷ ︸

=yN

}

where the parameter ξyN captures the residual heterogeneity for the truncated history yN , and
ytt−k represents the idiosyncratic variable (at date t) k periods in the past. The method to
compute the set of parameters (ξyN )yN will be discussed further below. In what follows, we will
discuss the various elements needed to apply the aggregation procedure.

First, we need to compute the measure of agents with the same history yN . An agent with
history ỹN at t− 1 will have a different truncated history in period t depending on the realization
of the idiosyncratic variable at date t. The probability to transit from truncated history ỹN to
truncated history yN will be denoted by ΠỹNyN (with∑yNY∞N ΠỹNyN = 1) and can be computed
from the transition probabilities for the productivity process as:

ΠỹNyN = 1yN�ỹNΠỹN0 y
N
0
≥ 0,

where 1yN�ỹN is equal to 1 if yN is a possible continuation of ỹN , and 0 otherwise. With those
elements, we can compute the share of agents with truncated history yN as St,yN . This element
will be:

St,yN =
∑

ỹN∈YN
St−1,ỹNΠỹNyN , (85)

where the initial shares (S−1,yN )yN∈YN are given with ∑yN∈YN S−1,yN = 1.
The model aggregation then assigns to each truncated history the average choices (whether

for consumption, savings, or labor supply) of the group of agents sharing the same truncated
history. Let us consider a generic variable denoted by Xt(yt, st), and denote by Xt,yN the average
quantity of X assigned to truncated history yN . Formally:

Xt,yN = 1
St,yN

∑
yt∈Yt+1|(ytt−N+1,...,y

t
t−1,y

t
t)=yN

Xt(yt,st)µt(yt), (86)

where we remind that µt(yt) is the measure of agents with history yt. Definition (86) can be
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applied to consumption, savings, labor supply, and credit-constraint Lagrange multiplier. This
leads to the quantities ct,yN , ãt,yN , lt,yN , and νt,yN , respectively. Note that applying (86) to
beginning-of-period wealth involves accounting for the fact that agents with truncated history yN

at date t may come from various truncated histories at t− 1. Specifically, this variable consists
of the wealth of all agents with history yN in period t but with any other possible history in
t− 1. Formally, the beginning-of-period wealth ˜̃at,yN for truncated history yN is:

˜̃at,yN =
∑

ỹN∈YN

St−1,ỹN

St,yN
Πt,ỹNyN ãt−1,ỹN . (87)

We now define the various “ξs”. First, we define ξu,0
yN

as::
∑

yt∈Yt+1|(ytt−N+1,...,y
t
t−1,y

t
t)=yN

u(ct(yt)) = ξu,0
yN
u(

∑
yt∈Yt+1|(ytt−N+1,...,y

t
t−1,y

t
t)=yN

ct(yt)),

or compactly as: ∑
yti∈Yt+1|yt,Ni =yN

u(ci,t) = ξu,0
yN
u(ct,yN ). (88)

The quantity ξu,0
yN

reflects that aggregating utility levels is not equal to the utility of aggregated
consumption. This comes from the combination of two reasons. First, there is heterogeneity of
consumption among the population of agents having truncated history yN , due their history
prior to date t−N . Second, the utility function is not affine in general.

The same procedure applied to the other variables for the Ramsey problem (70)–(76) yields:∑
yti∈Yt+1|yt,Ni =yN

v(li,t) := ξv,0
yN
v(lt,yN ), (89)

∑
yti∈Yt+1|yt,Ni =yN

u′(ci,t) := ξu,1
yN
u′(ct,yN ), (90)

∑
yti∈Yt+1|yt,Ni =yN

(yi,tli,t)1−τt := ξy
yN

(yN0 lt,yN )1−τt . (91)

We can now proceed with the aggregation of the full-fledged model. First, the aggregation of
individual budget constraints (65) yields:

ct,yN + ãt,yN = Wtξ
y
yN

(lt,yN yN0 )1−τt +Rt˜̃at,yN , for yN ∈ Y∞N . (92)

The aggregation of Euler equations for consumption (74) and labor (75) yields:

ξu,E
yN

u′(ct,yN ) = βEt
[
Rt+1

∑
ỹN∈Y∞N

Πt+1,yN ỹN ξ
u,E
ỹN

u′(ct+1,ỹN )
]

+ νt,yN , (93)

ξv,1
yN
v′(lt,yN ) := (1− τt)Wtξ

y
yN

(lt,yN yN0 )1−τtξu,1
yN

(u′(ct,yN )/lt,yN ), (94)

where the coefficients (ξu,E
yN

)yN for the consumption Euler equations ensure that the aggregate
Euler equations yield Euler equations with aggregate consumption levels. In other words, the
(ξu,E
yN

)yN are determined such that the aggregated consumption levels (for truncated histories)
satisfy the consumption Euler equation (93). These coefficients are necessary because Euler
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equations involve non-linear marginal utilities. The same idea applies to the coefficients (ξv,1
yN

)yN
for the FOC on labor.

Finally, market clearing conditions can be expressed as:

Kt + B̂t =
∑

yN∈YN
St,yN ãt,yN , Lt =

∑
yN∈YN

St,yN yyN lt,yN . (95)

Equations (92)–(95) exactly characterize the dynamics of the aggregated variables ct,yN , ãt,yN ,
lt,yN , and νt,yN , as well as aggregate quantities Kt, B̂t, and Lt.

Steady state and computation of the ξs. Steady-state allocations allow us to compute the
parameters ξs as follows. We compute policy functions and wealth distribution of the Bewley
model, as well as identify the set of credit-constrained histories, denoted C. Aggregation equations
(86) and (87) can then be used to aggregate (steady-state) allocations cyN , ãyN , lyN , and νyN
. We then invert the consumption Euler equations (93) to deduce the preference parameters
(ξu,E
yN

)yN . The other ξs are computed explicitly by equations (88), (89), (90), (91), and (94).

The truncated model in the presence of aggregate shocks. We state two further as-
sumptions that enable us to use the truncation method in the presence of aggregate shocks,
resulting in the so-called truncated model.

Assumption B We make the following two assumptions.

1. The preference parameters (ξyN )yN remain constant and equal to their steady-state values.

2. The set of credit-constrained histories, denoted by C ⊂ Y∞N , is time-invariant.

Two properties are finally worth mentioning. First, a straightforward consequence of the
construction of the ξs is that the steady-state allocations of the initial and truncated models are
identical. Second, as the truncation length N becomes increasingly long, truncated allocations
(in the presence of aggregate shocks) can be shown to converge to those of the full-fledged
equilibrium. Section 6 shows that from a quantitative standpoint, the ξs efficiently capture the
heterogeneity within truncated histories, even when the truncation length remains limited.

D.2 Ramsey program

Program formulation. The finite state-space representation of the truncated model allows us
to solve for the Ramsey program in the presence of aggregate shocks.30 Let (ωy)y∈Y denote the
period weights associated with each productivity level. The Ramsey program in the truncated
economy can be written as follows:

max(
Wt,Rt,w̃t,r̃t,τct ,τ

K
t ,τt,κt,B̂t,Gt,Kt,Lt,(ct,yN ,lt,yN ,ãt,yN ,νt,yN )

yN

)
t≥0

W0, (96)

30Our method involves deriving the FOCs of the truncated model, rather than truncating the FOCs of the
full-fledged Ramsey model. This ensures numerical stability, as the truncated model is "well-defined" for the fiscal
policy under consideration by construction.
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whereW0 := E0
[∑∞

t=0 β
t∑

yN∈YN St,yNωyN (ξu,0
yN
u(ct,yN )− ξv,0

yN
v(lt,yN ) + uG(Gt))

]
and subject to

aggregate Euler equations (93) and (94), aggregate budget constraint (92), aggregate market
clearing conditions (95), credit constraints ãt,yN ≥ −ã, as well as the governmental budget
constraint (71), which is already present in the full-fledged Ramsey program.

First-order conditions. We define the net social value of liquidity of history yN as in (80):

ψ̂t,yN = ωyN ξ
u,0
yN
u′(ct,yN )− µt

−
(
λc,t,yN ξ

u,E
yN
−Rtλ̃c,t,yN ξ

u,E
yN
− λl,t,yN ξ

y
yN

(1− τt)Wt(yN0 )1−τt l−τt
t,yN

ξu,1
yN

)
u′′(ct,yN ). (97)

FOC with respect to ãt,yN :

ψ̂t,yN = βEt
[
Rt+1

∑
ỹN∈Y∞N

Πt,yN ỹN ψ̂t+1,ỹN

]
if νyN = 0 and λc,t,yN = 0 otherwise. (98)

FOC with respect to lt,yN :

ωyN ξ
v,0
yN
v′(lt,yN ) + λl,t,yN ξ

v,1
yN
v′′(lt,yN )

(1− τt)Wtξ
y
yN

(yN0 )1−τt l−τt
t,yN

= ψ̂t,yN − λl,t,yN τtξ
u,1
yN

(u′(ct,yN )/lt,yN )

+ µt(1− α) Yt

(1− τt)Wtξ
y
yN

(yN0 )−τt l−τt
t,yN

Lt
. (99)

FOC with respect to Wt:∑
yN∈Y∞N

St,yN ξ
y
yN

(lt,yN yyN )1−τt
(
ψ̂t,yN + λl,t,yN (1− τt)ξu,1yN

(u′(ct,yN )/lt,yN )
)

= 0. (100)

FOC with respect to Rt:∑
yN∈Y∞N

St,yN
(
ψ̂t,yN ˜̃at,yN + λ̃c,t,yN ξ

u,E
yN

u′(ct,yN )
)

= 0. (101)

FOC with respect to τt:∑
yN∈Y∞N

St,yN
(
ψ̂t,yN + λl,t,yN (1− τt)ξu,1yN

(u′(ct,yN )/lt,yN )
)

ln
(
lt,yN yyN

)
ξy
yN

(lt,yN yyN )1−τt

= −
∑

yN∈Y∞N
St,yNλl,t,yN ξ

y
yN

(lt,yN yyN )1−τtξu,1
yN

(u′(ct,yN )/lt,yN ). (102)

FOC with respect to B̂t:

µt = βE
[
µt+1

(
1 + α

Yt+1
Kt
− δ

)]
. (103)
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We must furthermore have:

λ̃c,t,yN =
∑

ỹN∈Y∞N

St−1,ỹN

St,yN
Πt,ỹNyNλc,t−1,ỹN , (104)

ãt,yN ≥ 0 and ˜̃at,yN =
∑

ỹN∈Y∞N

St−1,ỹN

St,yN
Πt,ỹNyN ãt−1,ỹN . (105)

D.3 Matrix expression

In this section, we provide closed-form formulas for preference multipliers ξs (Section D.1) and
the weights ωs. We start with some notation:

◦ is the Hadamard product, ⊗ is the Kronecker product, × is the usual matrix product.

For any vector V , we denote by diag(V ) the diagonal matrix with V on the diagonal.
The matrix representation consists in stacking together the equations characterizing the

steady state, so as to provide a convenient matrix notation for solving the steady state. Truncated
histories are simply indexed by yN (the precise index does not matter as long as it remains the
same). This also provides an efficient solution to compute the values for the coefficients (ξyN )
and (ωyN ).

D.3.1 A closed-form formula for the ξs

Let S = (SyN )yN be the Ntot-vector of steady-state history sizes (where Ntot is the number of
truncated histories). Similarly, let a, c, l, ν, u′(c), v′(l) u′′(c), v′′(l) be the Ntot-vectors of
end-of-period wealth, consumption, labor supply, Lagrange multipliers, marginal utilities, and
derivatives of the marginal utility, respectively. These vectors are known from the steady-state
equilibrium of the Bewley model. Each element is defined as the truncation of the relevant
variable computed using equation (86). We also define by y = (yN0 )yN the Ntot-vector of current
productivity levels of truncated histories, and by P the diagonal matrix having 1 on the diagonal
at yN if and only if the history yN is not credit constrained (i.e., νyN = 0), and 0 otherwise.
Finally, I is the (Ntot×Ntot)-identity matrix, Π is the transition matrix across truncated histories.

Writing (85) , (92) and credit constraints at the steady state yield, respectively:

S = ΠS, (106)

S ◦ c+ S ◦ ã = RΠ (S ◦ ã) +WS ◦ ξy ◦ (y ◦ l)1−τ , (107)

(I − P )ã = 0Ntot×1 . (108)

The Euler equation for consumption in (93) becomes:

ξu,E ◦ u′(c) = βRΠ>
(
ξu,E ◦ u′(c)

)
+ ν,

where the transpose matrix Π> implies expectations about next period histories. Equivalently:

Du′(c)ξ
u,E = βRΠ>Du′(c)ξ

u,E + ν,
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where Dx stands for the diagonal matrix with the vector x on the diagonal. Finally:

ξu,E =
[(
I − βRΠ>

)
Du′(c)

]−1
ν. (109)

From the FOC on labor in (94), we obtain:

ξv,1 = (1− τ)W (y ◦ l)1−τ ◦ ξy ◦ ξu,1 ◦ u′(c)./(l ◦ v′(l)). (110)

The equations (88)–(91) yield:

ξu,0 =
∑
yN∈Y∞N u(ci,t)
u(ct,yN ) , ξu,1 =

∑
yN∈Y∞N u

′(ci,t)
u′(ct,yN ) , (111)

ξv,0 =
∑
yN∈Y∞N v(li,t)
v(lt,yN ) , ξy =

∑
yN∈Y∞N (yi,tli,t)1−τ(
yN0 lt,yN

)1−τ . (112)

Finally, we define the following variables:

D.3.2 Matrix expressions for the FOCs

We define the following variables: λ̄l := S ◦ λl, ψ̄ := S ◦ ψ̂, Π̄ := S ◦Π> ◦ (1/S), ω̄ := S ◦ ω,
λ̄c := S ◦ λc, ξ̃

u,1 := ξu,1./l, ξ̃v,1 := ξv,1./((1 − τ)Wξy ◦ y1−τ ◦ l−τ ), and ξ̃v,0 := ξv,0./((1 −
τ)Wξy ◦ y1−τ ◦ l−τ ). and notice that S ◦ λ̃c = Πλ̄c. With this notation, the FOCs (97)–(103)
become:

ψ̄ = ω̄ ◦ ξu,0 ◦ u′(c)− µS (113)

−
(
λ̄c ◦ ξu,E −RΠλ̄c ◦ ξu,E − (1− τ)W λ̄l ◦ ξy ◦ (y ◦ l)1−τ ◦ ξ̃u,1

)
◦ u′′(c),

Pψ̄ = βRP Π̄ψ̄, (114)

(I − P )λ̄c = 0, (115)(
ξy ◦ (y ◦ l)1−τ

)>
ψ̄ = −(1− τ)

(
ξy ◦ (y ◦ l)1−τ ◦ ξ̃u,1 ◦ u′(c)

)>
λ̄l, (116)

ã>ψ̄ = −
(
ξu,E ◦ u′(c)

)>
Πλ̄c, (117)

ω̄◦ξ̃v,0◦v′(l) + λ̄l◦ξ̃
v,1◦v′′(l) = ψ̄−τ ξ̃u,1◦u′(c)◦λ̄l + µFLS./((1− τ)Wξy◦y−τ◦l−τ ), (118)(

ln(y ◦ l)◦ξy◦(y ◦ l)1−τ
)>
ψ̄ = −

(
(1 + (1− τ) ln(y◦l))◦ξy◦(y ◦ l)1−τ◦ξ̃u,1◦u′(c)

)>
λ̄l. (119)

D.3.3 Solving the system

Equation (118) yields:

D
ξ̃
v,1◦v′′(l)+τ ξ̃u,1◦u′(c)λ̄l = µFLS./((1− τ)Wξy ◦ y−τ ◦ l−τ ) + ψ̄ −D

ξ̃
v,0◦v′(l)ω̄,

λ̄l = M0ω̄ +M1ψ̄ + µV 0. (120)

with: M0 := −M1Dξ̃
v,0◦v′(l), M1 := D−1

ξ̃
v,1◦v′′(l)+τ ξ̃u,1◦u′(c)

, and V 0 := FLM1S./((1− τ)Wξy ◦
y−τ ◦ l−τ ).
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Equation (113) then implies:

ψ̄ = M̂0ω̄ + M̂1λ̄c + M̂2λ̄l − µS. (121)

with: M̂0 := Dξu,0◦u′(c), M̂1 := −Dξu,E◦u′′(c)(I −RΠ), M̂2 := (1− τ)WD
ξy◦(y◦l)1−τ◦ξ̃u,1◦u′′(c).

We obtain using (121) and (120):

ψ̄ = M3ω̄ +M4λ̄c + µV 1, (122)

whereM2 := I−M̂2M1,M3 := M−1
2 (M̂0+M̂2M0),M4 := M−1

2 M̂1, V 1 := M−1
2 (M̂2V 0−

S).
Furthermore, equations (114), (115), and (122) imply:

λ̄c = M5ω̄ + µV 2, (123)

where R̃5 := −((I − P ) + P (I − βRΠ̄)M4)−1P (I − βRΠ̄), M5 := R̃5M3, and V 2 := R̃5V 1.
Substituting (122) and (123) into (117), we deduce:

µ = −L0ω̄, (124)

where C1 := ˜̃a>(V 1 +M4V 2) + (ξu,E ◦ u′(c))>ΠV 2 and L0 := (ã>(M3 +M4M5) + (ξu,E ◦
u′(c))>ΠM5)/C1.

We deduce from (122) and (123):

λ̄c = (M5 − V 2L0)ω̄, (125)

ψ̄ = M6ω̄, (126)

and from (120):

λ̄l = M̂6ω̄. (127)

We have defined M̂6 := M0 +M1M6 − V 0L0 and M6 := M3 +M4(M5 − V 2L0)− V 1L0.

Constructing the constraints. The constraint of equation (119) becomes after substituting
the expressions (126) of ψ̄ and (127) of λ̄l:

L̃1ω̄ = 0, (128)

where:

L̃1 :=
(
ln(y ◦ l) ◦ ξy ◦ (y ◦ l)1−τ

)>
M6

+
(
(1 + (1− τ) ln(y ◦ l)) ◦ ξy ◦ (y ◦ l)1−τ ◦ ξ̃u,1 ◦ u′(c)

)>
M̂6.

The constraint (116) becomes after substituting the expressions (126) of ψ̄ and (127) of λ̄l:

L̃2ω̄ = 0, (129)
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where:

L̃2 :=
(
ξy ◦ (y ◦ l)1−τ

)>
M6 + (1− τ)

(
ξy ◦ (y ◦ l)1−τ ◦ ξ̃u,1 ◦ u′(c)

)>
M̂6.

The two constraints imposed on the history weights are L̃1ω̄ = 0 and L̃2ω̄ = 0. However, ω̄
is a vector of length Ntot, while we care in Definition 2 about a vector ωY = (ωy)y of length Y .
We define the Ntot × Y -matrix R0 that maps a Y -vector into an Ntot-vector (where 1Sy ∈ RSy is
a Sy-vector of 1):

R0 :=


1Sy1

0 0 0
0 1Sy2

0 0
...

... . . . ...
0 0 . . . SyY

 ,

and the Ntot × Y -matrix R1 := DSR0 that maps a Y -vector into an Ntot-vector, but where
history sizes have been accounted for. To obtain dimensions compatible with other vectors and
matrices, we define ω = R0ω

Y and ω̄ = R1ω
Y .

In conclusion, the two constraints of Definition 2 on the weights ωY = (ωy)y are:

L1ω
Y = L2ω

Y , (130)

with L1 = L̃1R1 and L2 = L̃2R1.

E Changes in the fiscal system

To identify the effect of the fiscal system in the indentification of weights, we now assume that
fiscal systems are swapped between the two countries: France adopts the US fiscal system and
the other way around. Table 6 summarizes the new fiscal system for each country.

United States France

τk 0.35 0.36
τc 0.18 0.05
κ 0.98 0.65
τ 0.23 0.16

B/Y 0.21 0.91

Table 6: New fiscal system for the United States and France in the current experiment.

We use our estimation strategy to compute the new SWF weights with the updated fiscal
system of Table 6. We report in Figure 8 the differences implied by the new fiscal system
compared to the benchmark for some key variables. These variables are SWF weights, utility
level, labor supply, and capital income change. The results are averaged for each productivity
level.

Considering the United States in panel (a), we observe that the change in the fiscal system
increases the weights of low productivity agents and decreases the one of high-productivity.
This results from low-productitivity agents benefiting from the new fiscal system, as can be
see from the period utility, which decreases with productivity. We also observe that the new
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(a) United States (b) France

Figure 8: Difference in weights between the US and French fiscal systems.

fiscal system makes both labor and capital income more progressive. Considering France in
panel (b), we first observe the opposite variations. As can be seen from the decreasing utility,
low-productivity agents suffer from the new fiscal system, which contributes to lower the SWF
weights of low-productivity agents. The hump-shaped weights comes from high-productivity
agents benefiting from the new fiscal system, which makes the labor and capital incomes less
progressive.

F Robustness checks for SWF weights

We now relax two assumptions of our identification strategy: (i) the exact determination of
weights by the constraints by imposing a parametric functional form; (ii) the weights depending
only on the current productivity level.

F.1 Non-parametric weights

In the previous exercise we estimated parametric weights, where we imposed a functional
relationship between weights and productivity to obtain an exact identification (see Definition 2).
We consider here a different identification strategy to check the robustness of our results. We now
estimate non-parametric weights, by choosing among all the weights verifying the constraints,
those with the lowest variance.

More precisely, as explained in the Section 4.4 (see equation (130)), the Ramsey FOCs impose
two constraints: ∑y∈Y Lk,yωy = 0, where Lk,y ∈ R (k = 1, 2 and y ∈ Y). The variance-minimizing
weights are characterized by the vector (ω̂y)y, solving the following program:

(ω̂y)y =argmin(ωy)y
∑
y∈Y

πy(ωy − 1)2, (131)

s.t. 0 =
∑
y∈Y

Lk,yωy for all k = 1, 2, (132)

1 =
∑
y∈Y

πyωy. (133)

Figure 9 plots the non-parametric weights (blue solid lines) along the productivity dimension
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(a) United States (b) France

Figure 9: Non-pametric weights (solid line) as a function of productivity levels for the US and
France.

for the agents. We also report the parametric weights discussed in Section 6.2 (black dashed
lines). both parametric and non-parametric weights are quite close to each other and exhibit
a similar shape. The weights are increasing in the US and have a U-shape in France, with a
high value of weights for low productivity agents. From this experience, we conclude that the
shape of the weights is robust to the identification strategy, even if the value of weights for high
productivity agents is not exactly identified in France.

F.2 Weights per truncated history

We relax here the assumption of the SWF weights depending solely on the current productivity
level. We assume that weights possibly depend on the whole truncated history. We thus need to
compute Y N weights instead of Y . These weights are thus strongly under-identified. We use
the same identification strategy as in for non-parametric weights in Section F.1. We select the
minimal-variance weights verifying the constraints imposed by the Ramsey program. Formally,
the weights (ω̂yN )yN are determined as follows:

(ω̂yN )yN =argmin(ω
yN

)
yN

∑
yN∈YN

SyN (ωyN − 1)2, (134)

s.t. 0 =
∑

yN∈YN
L̃k,yNωyN for all k = 1, 2, (135)

1 =
∑

yN∈YN
SyNωyN , (136)

where L̃1 and L̃2 are defined in (128) and (128).
In Figure 10, we plot these history weights for the US in panel (a) and France in panel

(b). We restrict to histories with a positive mass. To make them comparable with previous
parametric weights we compute an average weight by summing the weights of truncated histories
that have the same productivity level in the first period, and taking into account the size of
each truncated history. This results into 10 weights, as for initial weights. The results are
plotted in Figure 11, where we report the non-parametric Pareto weights as a solid blue line
and the average history weights as a dashed red line (averaged over histories having the same
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(a) United States (b) France

Figure 10: History weights for the US and France. Histories are arranged in the ascending order
of the first-period productivity level.

(a) United States (b) France

Figure 11: Comparison between non-parametric weights and average history weights for the US
and France.

current productivity level). We can observe that average history weights (red dashed line) closely
approximate the non-parametric ones (blue line). Despite small differences, two methods imply
very similar weights.
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