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Abstract
We analyze optimal fiscal policy in a heterogeneous-agent model with capital

accumulation and aggregate shocks, where the government uses public debt, capital
tax, and progressive labor tax to finance public spending. First, we provide conditions
on utility functions and social welfare functions for the existence of a steady-state
equilibrium with positive capital tax; we identify three conditions: a non-first-best
condition, a Straub–Werning condition, and a Laffer condition. Second, we show
theoretically and quantitatively that the optimal dynamics of public debt depend
crucially on the persistence of the positive public spending shock, for a given net
present value of the shock; the optimal public debt increases (resp. decreases) when
the persistence of the shock is low (resp. high) because of a trade-off between con-
sumption smoothing and the reduction of distortions. Third, labor tax progressivity
increases after such a shock.
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1 Introduction

What is the optimal level of public debt? Should it increase or decrease when public
spending is increasing? After a positive public spending shock, should the government
temporarily increase capital tax or other distorting taxes, affecting the progressivity of
the tax system? These old questions are likely to remain relevant in the coming years
in many countries, as policymakers increasingly discuss additional public spending for
climate change or military purposes. Such questions require considering both distorting
and redistributive effects of tax changes, while accounting for general equilibrium effects.
Heterogeneous-agent models in the tradition of the Bewley–Huggett–Imrohoroğlu–Aiyagari
literature (Bewley, 1983; Imrohoroğlu, 1989; Huggett, 1993; Aiyagari, 1994; Krusell and
Smith, 1998) are relevant tools for analyzing such questions because they generate a
realistic amount of heterogeneity together with general and dynamic equilibrium effects.
However, after seminal papers investigating optimal fiscal policy in these environments
(Aiyagari, 1995; Aiyagari and McGrattan, 1998), the literature has mainly moved toward
a positive analysis and little is known about the optimal dynamics of public debt and
capital tax, because of the theoretical and computational difficulties of solving for optimal
fiscal policy with aggregate shocks.

This paper analyzes optimal fiscal policy in heterogeneous-agent models, considering
capital accumulation, progressive labor income taxation, capital tax, public debt, and
aggregate shocks. The only frictions considered are incomplete markets for idiosyncratic
risk, occasionally binding credit constraints (which appear to be the key friction), and
the given set of fiscal instruments. In particular, the planner cannot use lump-sum taxes,
which are known to possibly restore Ricardian equivalence in some environments (Bhandari
et al., 2017). Considering capital accumulation allows characterizing the optimal dynamics
of capital tax and discussing its relationship with the results of the vast Chamley–Judd
literature on optimal capital taxation. Even though our analysis admittedly abstracts
from other frictions, such as nominal rigidities or frictional labor markets, we identify new
mechanisms that will also be present in more-general environments.1

Characterizing the optimal Ramsey allocation with full commitment in this environment
provides two sets of results. We show that there exist steady-state equilibria where both
optimal public debt and capital tax are positive, which is a necessary first step before

1Considering only price or wage stickiness would generate the same allocation as in our economy
because the sole role of optimal monetary policy is price stability given the set of fiscal instruments that
we consider (see LeGrand et al., 2022).
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studying the effect of aggregate shocks. This was claimed by Aiyagari (1995) but with no
formal proof of existence to the best of our knowledge, while Chien and Wen (2022a) claimed
that such an equilibrium does not exist in some standard models. In addition, Straub and
Werning (2020) showed that the steady state may not exist even in a complete-market
environment. The existence of a steady state actually appears to be subtle. To make the
algebra transparent, we provide a formal proof in an environment with deterministic income
fluctuations. In the case of a utilitarian planner, we prove the existence of a steady-state
equilibrium with optimal positive capital tax for a utility function without wealth effect
on the labor supply (as in Aiyagari, 1995). We also prove it for the King-Plosser-Rebelo
(KPR) utility function, as well as for different classes of utility functions separable in
consumption and leisure (Stone–Geary, Fishburn, and CARA). Noticeably, the equilibrium
does not exist for the standard CRRA separable utility function, which is consistent with
the claim of Chien and Wen (2022a) and the numerical investigation of Auclert et al. (2022).
When the planner is not utilitarian—implying that it can weight agents according to their
idiosyncratic characteristics, as in Heathcote and Tsujiyama (2021) for instance—then
we prove the equilibrium existence even in the standard CRRA utility case. In all cases,
the existence of the steady-state equilibrium relies on three independent conditions: a
non-first-best condition, a so-called Straub–Werning condition, and a standard Laffer
condition. The Straub–Werning condition elaborates on Straub and Werning (2020) and
states that the public spending must be low enough to ensure a stationary steady state
and avoid the planner choosing to continuously decrease the capital stock (although they
could levy enough resources at the steady state). In addition to these three conditions for
the steady-state equilibrium, a fourth condition, a Blanchard–Kahn condition, ensures
the equilibrium stability. All these conditions can be shown to be compatible with each
other, in the sense that an equilibrium can actually exist. Also, we show that in addition
to positive capital tax, the optimal fiscal system can exhibit (for some parameterization) a
positive public debt that absorbs the excess savings. From this investigation, we deduce
that heterogeneous-agent models are relevant tools for normative fiscal analysis around a
well-defined steady state, even though it requires some conditions on the utility function
or the social welfare function (SWF) of the planner.

The second set of results concerns the optimal dynamics of fiscal policy after a positive
public spending shock. First, we find that for a given net present value (NPV) of public
spending, public debt increases (resp. decreases) when the persistence of the shock is low
(resp. high). Consequently, the persistence of the shock is a key driver of the optimal
dynamics of public debt. We prove this result analytically in the simple model and then
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show that it holds in the quantitative model. We thus show that the key friction for our
result is occasionally binding credit constraints and not aggregate or idiosyncratic risk.
Furthermore, capital tax increases on impact, while labor tax barely moves. The intuition
for these results is that, contrary to the complete-market case where agents initially hold
some capital, the capital tax is not used to fully front-load the adjustment, because taxing
capital reduces the ability of agents to self-insure when markets are incomplete. In addition,
in this type of model, public debt converges back to its optimal steady-state value for any
transitory public spending shock (when it exists). Consequently, when the persistence is
high, a transitory increase in public debt would require a welfare-reducing highly persistent
increase in taxes to finance public spending and to reduce public debt. Therefore, the
optimal policy is to front-load the adjustment and to reduce public debt temporarily.
When the persistence is low, the increase in public debt improves consumption smoothing
and a small increase in taxes is enough to ensure public debt convergence.

The quantitative model features a realistic income risk, nonlinear labor tax as in
Heathcote et al. (2017), and a general SWF. The results of the quantitative model are
consistent with the ones of the theoretical model: Public debt increases when the persistence
of the public spending shock is low, and decreases otherwise. The quantitative model
generates additional results: labor-tax progressivity and capital tax both increase after
a positive public spending shock, but the increase is smaller when the persistence of the
shock is higher. Public debt also quantitatively exhibits much more persistent deviations
than other variables. These dynamics generate a response of the market allocation that is
relatively close to the first-best dynamics.

Computing Ramsey optimal fiscal policies with many instruments in the presence
of aggregate shocks is difficult. We use a factorization method introduced by Marcet
and Marimon (2019) and applied to heterogeneous-agent models by LeGrand and Ragot
(2022a). This approach allows for occasionally binding credit constraints, which we show
to be the key friction. Because we are interested in the dynamics of the fiscal system in
the quantitative model, we first estimate an SWF consistent with the observed US tax
system by solving the inverse optimum taxation problem, as in Heathcote and Tsujiyama
(2021) among others. Once our model roughly reproduces at the steady state the US tax
system and allocation, we then compute the optimal responses of capital tax, labor tax
progressivity, and public debt after public spending shocks with different persistences,
around a well-defined steady state.

This paper is related to the literature on optimal fiscal policy in heterogeneous-agent

4



models.2 As mentioned above, the existence of well-defined Ramsey equilibria is still an
open question. Conesa et al. (2009) considered transitions with constant instruments.
Chien and Wen (2022a) and Auclert et al. (2022) find that the Ramsey steady-state
equilibrium does not exist for separable CRRA utility function. Dyrda and Pedroni (2022)
solved quantitatively for optimal policy by considering the full path of the instruments and
using a KPR utility function. Aiyagari (1995) and Açikgöz et al. (2018) analyze optimal
public debt when there is no wealth effect for labor supply. Bassetto and Cui (2020) study
an environment where public debt can relax the credit constraint of the producer. They
find that steady-state capital taxes are positive, when public debt is constrained to be
at the top of the Laffer curve. We prove that equilibria with positive capital tax and
public debt can exist in standard incomplete market economies, depending on the utility
function.3

Analyzing optimal fiscal policy in such an environment obviously relies heavily on results
in complete-market economies for the idiosyncratic risk.4 Compared to these environments,
incomplete-market models allow consideration of optimal positive steady-state capital tax
and redistribution.

More generally, recent literature reports the development of tools for solving for optimal
policies with heterogeneous agents involving mostly monetary policy, for which the steady-
state allocation is simpler to characterize (e.g., Bhandari et al., 2021; Acharya et al., 2022;
LeGrand et al., 2022; Nuño and Thomas, 2022, among others). We use the truncation
approach of LeGrand and Ragot (2022a), using the refinement of LeGrand and Ragot
(2022c) to solve for the curse of dimensionality. This method allows one to easily simulate
models with many instruments and aggregate shocks. Because it is relatively new, we
summarize it below.

The rest of this paper is organized as follows. In Section 2, we present the general
environment. In Section 3, we present simplifying assumptions and solve the tractable
model, and in Section 4 we simulate the general model. In Section 5, we present some
empirical evidence for heterogeneity in the persistence of public spending, and finally we
conclude in Section 6.

2A large literature provides a positive analysis of fiscal policy in heterogeneous-agent models (e.g.,
Floden, 2001; Heathcote, 2005; Rohrs and Winter, 2017; Ferriere and Navarro, 2020, among many others).

3Albanesi and Armenter (2012) provide general sufficient conditions for the optimal steady-state capital
tax to be 0 in many environments. These conditions are are not fulfilled in our setup for relevant cases,
because the planner needs to use distorting labor tax to finance public spending when the capital tax is 0,
preventing the economy to converge to the first-best allocation.

4For relevant contributions, see Barro (1979); Chari et al. (1994); Farhi (2010); Bassetto (2014); Chari
et al. (2020); Straub and Werning (2020); Collard et al. (2023) among others.
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2 The Environment

Time is discrete and indexed by t = 0, 1, . . ., and the economy is populated by a continuum
of agents distributed along a set I with measure `. We follow Green (1994) and assume
that the law of large numbers holds. The economy features production and a benevolent
government that raises distorting taxes to finance an exogenous stream of public spending.

Risks. The aggregate shock solely affects public spending denoted by (Gt)t≥0 and is
therefore assimilated to a public spending shock. Furthermore, we assume that the whole
path of public spending (Gt)t≥0 becomes known to all agents in period 0. We will solve for
the optimal adjustment of the economy after such a shock, also known as an MIT shock.5

Agents face an uninsurable productivity risk. Individual productivity levels, denoted
by y, follow independent first-order Markov chains, whose state space is the finite set Y
and whose transition matrix is denoted by Π. We assume that the Markov chain admits
a stationary distribution that is denoted by the vector Sy, verifying Sy = (Sy)>Π.6 In
period t, when the productivity of agent i is yit, they will earn a before-tax labor wage
w̃ty

i
tl
i
t, where lit denotes their labor supply and w̃t the before-tax hourly wage. Their whole

history of shocks up to t is denoted by yi,t := {yi0, ..., yit}.
Finally, it is assumed that agents enter the economy at date 0 with an endowment of

wealth and productivity (ai−1, y
i
0)i drawn from a distribution Λ0.

Production. The production sector is standard. The consumption–investment goods of
the economy are produced by a profit-maximizing representative firm. At any date t, the
firm production function combines labor Lt and capital Kt−1—which must be installed
one period in advance—to produce Yt units of the consumption goods. The production
function is assumed to be of the Cobb–Douglas type featuring constant returns to scale
and capital depreciation. The total factor productivity is normalized to one. Formally,
the production is defined as

Yt = F (Kt−1, Lt) = Kα
t−1L

1−α
t − δKt−1,

where α ∈ (0, 1) is the capital share and δ ∈ (0, 1) is the capital depreciation rate.
5It is known that one can derive a first-order approximation of the dynamics of the model in the

presence of aggregate shocks, using the information obtained from MIT shocks (Boppart et al., 2018;
Auclert et al., 2021).

6In the quantitative analysis of Section 4, the Markov chain can be shown to be irreducible and
aperiodic, hence ny exists and is unique.
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The firm rents labor and capital at respective factor prices w̃t and r̃t. The profit
maximization conditions of the firm imply the following expressions for factor prices:

w̃t = FL(Kt−1, Lt) and r̃t = FK(Kt−1, Lt). (1)

Assets. In addition to capital, the economy also features public debt, whose size is
denoted by Bt in period t. Public debt consists of one-period bonds issued by a benevolent
government, which are assumed to be default-free. Because of our assumption of MIT
shocks, there is no aggregate risk in this economy. Both capital and public debt are thus
perfect substitutes, and no-arbitrage implies that they must pay the same after-tax return.
Agents’ savings are restricted to remain greater than an exogenous limit −a ≤ 0.

Period 0. We assume that the economy starts in period −1 with a given distribution of
individual saving (ai−1)i, a given amount of public debt B−1 and a given amount of capital
K−1, verifying K−1 +B−1 =

´
i
ai−1`(di). The MIT shock is the amount of public spending

(Gt)t≥0, which is revealed at period −1 before households actually perform their portfolio
choice at period −1. As a consequence, and as there is no aggregate risk, no arbitrage
implies that the two assets must have the same after-tax return in all periods, including
period 0. The before-tax real interest rate between period −1 and period 0 is denoted r̃0,
and the MIT shock affects the allocation from period 0 onward.

Government. A benevolent government has to finance the exogenous stream of public
spending (Gt)t≥0 by levying distorting taxes on capital and labor and issuing public debt.
The tax on capital is linear with a rate (τKt )t≥0, and the tax on labor income is assumed
to be nonlinear and possibly time-varying. We denote by Tt(w̃yl) the amount of labor
tax paid at date t by an agent earning the labor income w̃yl. We follow Heathcote et al.
(2017) (hereinafter HSV) and consider the following functional form:

Tt(w̃yl) := w̃yl − κt(w̃yl)1−τt , (2)

where κt captures the level of labor taxation and τt the progressivity. Both parameters are
assumed to be time-varying and will be the planner’s instruments in the general model.
When τt = 0, labor tax is linear with rate 1 − κt; oppositely, τt = 1 corresponds to full
income redistribution, where all agents earn the same post-tax income κt. Functional form
(2) combined with the linear capital tax allows one to realistically reproduce the actual US
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system and its progressivity (see Heathcote et al., 2017 or Ferriere and Navarro, 2020).7

Using previous elements, the government budget constraint can thus be written as,
t ≥ 0

Gt + (1 + r̃t)Bt−1 =
ˆ
Tt(w̃tyilit)`(di) + τKt r̃t(Bt−1 +Kt−1) +Bt. (3)

To simplify the government budget constraint, in the spirit of Chamley (1986) we introduce
generalized post-tax factor prices, which are denoted without a tilde. We define the gross
and net interest rates rt and Rt, respectively, and the wage rate wt as

wt := κt(w̃t)1−τt , (4)

Rt := 1 + rt = 1 + (1− τKt )r̃t. (5)

The model can be expressed analytically using the pair of post-tax rates (Rt, wt) rather than
pre-tax ones (r̃t, w̃t), which simplifies the algebra. The values of the fiscal instruments τKt ,
κt, and τt can then be recovered from the allocation. Taking advantage of the homogeneity
of the production function as in Chamley (1986), the governmental budget constraint (3)
becomes

Gt +RtBt−1 + (Rt − 1)Kt−1 + wt

ˆ
i

(yitlit)1−τt`(di) = F (Kt−1, Lt) +Bt. (6)

Agents’ program and resource constraints. At each date t, agents consume goods
in quantity ct, supply labor in quantity lt, and save an amount at. They derive an
instantaneous utility from consumption and labor supply denoted by U(ct, lt); the utility
function will be specified later. The discount factor is constant and denoted by β ∈ (0, 1).

Using the post-tax rate definition (4), the post-tax labor income amounts to w̃tyitlit −
Tt(w̃tyitlit) = wt(yitlit)1−τt , while post-tax capital income is equal to Rta

i
t−1. Formally, the

program of agent i endowed with the given initial wealth ai−1 can be expressed as

max
{cit,lit,ait}t≥0

E0

∞∑
t=0

βtU(cit, lit), (7)

cit + ait = Rta
i
t−1 + wt(yitlit)1−τt , (8)

ait ≥ −a, cit ≥ 0, lit ≥ 0. (9)
7The literature uses either the combination of a linear tax and a lump-sum transfer (e.g., Dyrda and

Pedroni, 2022; Açikgöz et al., 2018) or the HSV structure. Heathcote and Tsujiyama (2021) showed that
the HSV structure is quantitatively more relevant, and opting for the HSV tax structure enables us to
discuss the dynamics of optimal tax progressivity following a public spending shock.
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Note that because of our assumption of MIT shocks, the expectation operator in (10)—as
well as in the rest—solely concerns idiosyncratic shocks. The constraint (8) is the budget
constraint, and inequalities (9) are the credit constraint and the non-negativity constraints.

The solution of the previous program is a set of policy rules defined over the product
space of productivity histories and initial asset holdings: ct : Y t × [−ā; +∞) → R+,
at : Y t × [−ā; +∞)→ [−ā; +∞), and lt : Y t × [−ā; +∞)→ R+. To lighten the notation,
we will simply write cit, ait, and lit (instead of ct(yti , ai−1), at(yti , ai−1), and lt(yti , ai−1)) and
use the same notation for all variables.8

Denoting by βtνit ≥ 0 the Lagrange multiplier on the agent’s credit constraint, the
consumption Euler equation can be written as

Uc(cit, lit) = βEt
[
RtUc(cit+1, l

i
t+1)

]
+ νit , (10)

where Uc and Ul denote the derivatives of U with respect to consumption and labor,
respectively.

The first-order condition (FOC) on labor is

−Ul(cit, lit) = (1− τt)wt(yitlit)−τtUc(cit, lit), (11)

and the clearing of financial and labor markets implies the following equalities:

At = Kt +Bt and
ˆ
yitl

i
t`(di) = Lt. (12)

The clearing of the goods market reflects the fact that the sum of aggregate consumption,
public spending, and new capital stock balances the output production and past capital:

ˆ
i

cit`(di) +Gt +Kt = Kt−1 + F (Kt−1, Lt). (13)

We can now formulate the standard equilibrium definition.

Definition 1 (Competitive equilibrium) A competitive equilibrium is a collection of
individual variables (cit, lit, ait)t≥0,i∈I, aggregate quantities (Kt, Lt, Yt)t≥0, prices (w̃t, r̃t)t≥0,
fiscal policy (τKt , κt, τt, Bt)t≥0, and public spending (Gt)t≥0 such that for an initial distribu-
tion of wealth and productivity (ai−1, y

i
0)i∈I and for initial values of capital stock and public

debt verifying K−1 +B−1 =
´
i
ai−1`(di), we have the following. i) Given prices, individual

8Hence, the aggregation of the variable Xt in period t will be written as
´

i
Xi

t`(di) instead of the more
involved explicit notation

´
a−1

∑
yt∈Yt θt(yt)X(yt, a−1)dΛ0(a−1, y0), where θt(yt) is the probability of

occurrence of history yt in period t.
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strategies (cit, lit, ait)t≥0,i∈I solve the agent’s optimization program in equations (7)–(9). iii)
Financial, labor, and goods markets clear: for any t ≥ 0, equations (12) and (13) hold.
iii) The government budget is balanced: equation (3) holds for all t ≥ 0. iv) The pre-tax
factor prices (w̃t, r̃t)t≥0 are consistent with the firm’s program (1).

A stationary equilibrium is a competitive equilibrium where all aggregate variables
have converged toward constant values.

The Ramsey equilibrium. To consider general cases, we use a flexible form for the
SWF embedding the standard utilitarian criterion. We assume that the planner considers
a weighted sum of agents’ utilities, where the agent’s weight at date t depends on their
current productivity; this weight is denoted by ω(yit). The utilitarian case corresponds
to ω(y) = 1 for all y.9 This specification is similar to the approach in Heathcote and
Tsujiyama (2021), and it was used in an intertemporal setting by LeGrand et al. (2022),
Dávila and Schaab (2022), and McKay and Wolf (2022) to deviate from the utilitarian
case. Formally, the SWF that corresponds to the planner’s aggregate welfare criterion can
be expressed as

W0 = E0

[ ∞∑
t=0

βt
ˆ
i

ω(yit)U(cit, lit)`(di)
]
. (14)

The Ramsey program with full commitment consists in finding the fiscal policy that
corresponds to the competitive equilibrium with the highest aggregate welfare for the SWF
under consideration.

First-best outcome. In many cases studied below, the outcome of the Ramsey alloca-
tion will be compared to the first-best outcome. The latter is the solution of the program
maximizing aggregate welfare subject to the resource condition, or formally

max
((ci,t,li,t)i∈I ,Lt,Kt)t≥0

W0 (15)
ˆ
i

cit`(di) +Gt +Kt = Kt−1 + F (Kt−1, Lt), (16)
ˆ
yitl

i
t`(di) = Lt, K−1 given.

9A more general specification would consider the weights as being a function of the whole history of
idiosyncratic shocks for each agent: ωt(yi,t). However, a generalization is not needed in the quantitative
analysis, and so we follow the simpler formulation.
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3 Analyzing Existence and Dynamics in a Simple
Model

We now study optimal fiscal policy in a simple model to provide analytical results. The
simple model is based on some simplifications (e.g., linear labor tax) but more importantly
on the assumption of deterministic income fluctuations between two productivity levels, as
introduced by Woodford (1990). The gain is analytical solutions—including a characteri-
zation of the Ramsey allocation—but also the proof that positive capital tax and public
debt are the result of credit constraints and not of incomplete insurance markets.

First, we list the simplifying assumptions introduced in the environment of Section 2.

Assumption A 1. The labor tax is linear: in (2) we set τt = 0 and denote τLt := 1−κt
such that Tt(w̃yl) := τLt w̃yl.

2. The credit constraint is set to zero: a = 0.

3. There are only two productivity levels, i.e., 0 and 1. There is initially a unit mass

of agents in each state, and the transition matrix is anti-diagonal: Π =
 0 1

1 0

.
To summarize, the planner has three instruments, i.e., a linear capital tax, a linear

labor tax, and public debt, and agents face deterministic productivity shock subject to
non-negativity of savings. For simplicity, we refer to the two types of agents according
to their current employment status: “employed” (subscript e, when productivity is 1)
and “unemployed” (subscript u, when productivity is 0). Consistent with this two-agent
economy, we also renormalize the total population size to 2. We discuss the equilibrium
existence and its characterization depending on the specification of the utility function.

The remainder of this section is organized as follows. In Section 3.1, we study existence
conditions. We start by providing a detailed analysis of equilibrium existence and properties
in the case of a Greenwood–Hercowitz–Huffman (GHH) utility function and a utilitarian
planner. We then consider the KPR utility function. We extend our analysis to the case
of separable utility functions while maintaining the assumption of a utilitarian planner.
We present conditions for an equilibrium to exist in the general case, and we show that
they can hold in the cases of CARA, Fishburn, and Stone–Geary utility functions, while
they never do for CRRA utility functions. We conclude this subsection by showing that
equilibrium exists in the CRRA case when we depart from the utilitarian criterion and
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consider productivity-contingent weights in the SWF. In Section 3.2, we analyze the
dynamics of public debt in the simple model.

3.1 Existence Conditions for the Steady-State Equilibrium

GHH Utility Function and Utilitarian Planner

We start by considering a utility function without wealth effect on the labor supply, as in
the initial contribution by Aiyagari (1995) but also in Diamond (1998) to obtain analytical
results. The instantaneous utility function U is of the GHH type with the log specification:

U(c, l) := u

(
c− χ−1 l1+1/ϕ

1 + 1/ϕ

)
and u(c) := log(c), (17)

where ϕ > 0 is the Frisch elasticity of labor supply, and χ > 0 scales labor disutility. The
utilitarian planner sets the two weights to 1.

Structure of the economy. In any non-trivial equilibrium, employed agents cannot be
credit-constrained at any date, otherwise unemployed agents would consume zero, as they
do not earn any labor income. Thus there are only two possible steady-state equilibria:
one in which unemployed agents are not credit-constrained, and one in which they are.
Thus, the Ramsey program can be written as follows:

max
(ce,t,cu,t,ae,t,au,t,le,tBt,Kt,Rt,wt)

∞∑
t=0

βt
(
u
(
ce,t − χ−1 l

1+1/ϕ
e,t

1 + 1/ϕ
)

+ u(cu,t)
)

(18)

s.t.u′
(
ce,t − χ−1 l

1+1/ϕ
e,t

1 + 1/ϕ
)

= βRt+1u
′(cu,t+1), (19)

u′(cu,t) ≥ βRt+1u
′
(
ce,t+1 − χ−1 l

1+1/ϕ
e,t+1

1 + 1/ϕ
)
, (20)

with equality if au,t > 0,

ce,t + ae,t = Rtau,t−1 + wtle,t, (21)

cu,t + au,t = Rtae,t−1, (22)

le,t = (χwt)ϕ, (23)

F (Kt−1, le,t) +Bt = Gt +RtBt−1 + (Rt − 1)Kt−1 + wtle,t, (24)

Bt +Kt = ae,t + au,t, (25)

ae,t, au,t ≥ 0, (26)
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corresponding to maximizing the aggregate welfare criterion (18) subject to constraints
(19)–(23) guaranteeing the optimality of individual choices (Euler equations, budget
constraints, and labor FOC, respectively), to the governmental budget constraint (24), to
the financial market clearing condition (25), and to the credit constraints (26).

First-best allocation and possible decentralization. We solve program (15) to
derive the first-best allocation; see Appendix A.1 for the computations. As is standard
in this type of problem, the first-best outcome can be attained if public spending is not
too high. In this case, public debt is negative (the state thus holds some capital) and the
government finances public spending out of interest payments on the capital stock. This
is stated formally in the next proposition, whose proof can be found in Appendix A.2,
together with the value of the steady-state first-best level of output YFB.10

Proposition 1 Define

g1 := 1− β
β

α

1/β + δ − 1 −
1− β
1 + β

1− α
ϕ+ 1 . (27)

If the public spending verifies G ≤ g1YFB, then the steady-state Ramsey allocation is
the first-best steady-state allocation characterized by zero taxes and perfect consumption
smoothing.

Steady-state allocation with binding credit constraints. We now assume thatG >

g1YFB and characterize the equilibrium where the credit constraint binds for unemployed
agents (au,t = 0 for all t). We then provide the conditions for the existence of this
equilibrium. Before deriving FOCs, two important remarks are in order. First, even in
this simple framework, we must check that the Karush–Kuhn–Tucker conditions apply
to our problem, and that the FOCs actually characterize an optimum. Because of the
nonlinearity of the constraints (19)–(24), the standard Slater (1950) condition does not
apply in our problem. Therefore, we must check another constraint qualification; this is
done in Appendix A.3, where we verify that the linear independence constraint qualification
holds. Second, we verify that the second-order conditions are also fulfilled; this is done in
Appendix A.4, where we prove that the FOCs indeed characterize a maximum.

The FOCs are understood more easily when one uses the factorization approach of
10This non first-best condition is the condition identified in more general settings by Albanesi and

Armenter (2012), for optimal steady-state capital tax not to be 0.

13



LeGrand and Ragot (2022a).11 Denoting by λe,t the discounted Lagrange multiplier on
the constraint (19), the objective of the planner can be rewritten as

max
(ae,t,wt,Rt,Bt)t

L =
∞∑
t=0

βt
(
u

(
ce,t − χ−1 (χwt)1+ϕ

1 + 1/ϕ

)
− λe,tu′

(
ce,t − χ−1 (χwt)1+ϕ

1 + 1/ϕ

)

+ u(cu,t) + λe,t−1Rtu
′(cu,t))

− µt
(
Gt + (Rt − 1)ae,t−1 +Bt−1 + χϕwt

1+ϕ − F (ae,t−1 −Bt−1, (χwt)ϕ)−Bt

)
,

where we have used (23) and (25) and consumption choices are actually functions of
instruments: ce,t = χϕwt

1+ϕ − ae,t and cu,t = Rtae,t−1. The FOCs can be interpreted easily
after introducing the following new variables:

ψ̂et = µt − u′
ce,t − χ−1 l

1+1/ϕ
e,t

1 + 1/ϕ

+ λc,tu
′′

ce,t − χ−1 l
1+1/ϕ
e,t

1 + 1/ϕ

 , (28)

ψ̂ut = µt − u′(cu,t)− λc,t−1Rtu
′′(cu,t), (29)

where ψ̂et is interpreted as the gain for the planner of transferring one unit of resources
from agent e to its own budget constraint. We will call it the marginal value of public
funds financed by agent e. Indeed, the marginal value of one unit of goods for the planner
is µt, while the social cost for agent e is the sum of their private cost of a reduction in
consumption (the second term, −u′(·)) and the effect on saving incentives (the third term
λtu

′′(·)). Similarly, ψ̂ut is the gain for the planner of transferring one unit of resources from
agent u to its own budget. The planner cannot set ψ̂et or ψ̂ut to zero because it does not
have access to productivity-contingent lump-sum tax. We show in Appendix A.5 and A.6
that the first-order steady-state conditions of the planner are

1 + FK = 1
β
, (30)

ψ̂e = βRψ̂u, (31)

ψ̂e = ϕµ
( 1

1− τL − 1
)
, (32)

ψ̂uae = λeu
′ (cu) . (33)

Equation (30) is the modified golden rule, already discussed in Aiyagari (1995), which states
11This method is based on the factorization of the Lagrangian introduced by Marcet and Marimon

(2019). Two other solution methods can easily be implemented in this simple case. The first is the primal
approach, where prices are substituted using the FOCs of households (e.g., as in Bhandari et al., 2021).
Second, the Lagrangian approach keeps the prices as instruments but introduces Lagrange multipliers on
Euler equations. All methods provide the same FOCs, as we show in Section C.2.
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that the marginal product of capital is the same as in the first-best equilibrium because of
the Euler equation of the planner for the choice of public debt. This equation implies that
the capital-to-labor ratio is the same as in the first best: K/L = KFB/LFB. Equation (31)
states that the planner intertemporally smooths out the marginal value of public funds
using the post-tax interest rate. Equation (32) states that trade-off faced by the planner
in raising resources from employed agent e is the distortion in labor supply, which depends
on the Frisch elasticity of the labor supply, ϕ. Equation (33) states that taxing capital
to obtain resources from unemployed agent u generates a cost in the distortion of saving
incentives, measured by λeu′(cu). Finally, one can check that ψ̂e, ψ̂u > 0, reflecting the
fact that the planner wants to tax both agents for financing public spending. The first
result is presented below.

Proposition 2 If the steady-state Ramsey equilibrium has a positive capital tax, τK > 0,
then capital and labor taxes are such that the post-tax rate and wage satisfy

1− βR︸ ︷︷ ︸
Smoothing wedge

= FL − w
w︸ ︷︷ ︸

Labor wedge

ϕ (1 + β)︸ ︷︷ ︸,
Net distribution gain

(34)

or equivalently

(1− β)τK = τL

1− τLϕ(1 + β). (35)

The term on the left-hand side of equation (34) is positive because of the capital tax,
as 1− βR = τK(1− β). It captures the low equilibrium post-tax interest rate faced by
agents. Perfect consumption smoothing would imply βR = 1, delivering ce = cu. For this
reason, we call this difference “smoothing wedge”.12 The planner trade-off implies that
the smoothing wedge is proportional to the labor wedge, which is the first term on the
right-hand side. In the first-best allocation, the remuneration of labor would be equal to
its marginal productivity (FL = w) and thus the labor wedge reflects a positive labor tax.

The third term, called the net distribution gain (NDG), weights the labor wedge by its
distribution cost. It is equal to the Frisch elasticity ϕ, which measures the effect of the
labor wedge on labor supply, multiplied by 1+β, as the additional resources benefit to both
employed and unemployed agents (though savings). We discuss the NDG further below
when considering other utility functions. Finally, using equation (30), the relationship

12The denominations are related to the ones used by Chari et al. (2007). We call the low interest rate
“smoothing wedge” and not “investment wedge” as they do, because the planner uses public debt to reach
the optimal pre-tax interest rate. Thus, capital tax affects consumption smoothing, but the marginal
productivity of capital is equal to its first-best value because the modified golden rule holds.
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(34) can also be written as in equation (35). It shows that in equilibrium, the capital
tax increases with the labor tax: both distortions increase together with the financial
requirements that the planner has to finance.13 In particular, the capital tax is positive
whenever the labor tax is.

The next proposition characterizes the existence of this equilibrium.

Proposition 3 There exist two thresholds gLa and gSW , defined in equations (89) and
(93) of Appendix A.7, such that when g1YFB < G ≤ min (gSW , gLa)× YFB, there exists a
steady-state equilibrium with binding credit constraint for unemployed agents where both
taxes τL and τK are positive.

The proposition is proved in Appendices A.7 and A.9. In addition to the non-first-
best condition, g1YFB < G, the existence of the steady-state equilibrium is subject to
two additional conditions, reflected in two thresholds on the public spending. The first
threshold gSW ensures that the Lagrange multiplier µ is positive. This independent
constraint has been discussed recently by Straub and Werning (2020), justifying the SW
subscript and the denomination of Straub-Werning condition. If G > gSWYFB, then no
(stationary) steady-state equilibrium exists, and a non-stationary equilibrium may exist,
as studied in Appendix A.10. The threshold gLa corresponds to a more traditional Laffer
condition. When G is higher than this last threshold, not enough resources can be raised
with the distorting taxes to finance it. We prove in Appendix A.7 that the constraints
g1YFB < G ≤ min (gSW , gLa)×YFB are compatible for some G and some parameter values.
However, stating which of gSW or gLa is greater is not possible in general, as both cases
are possible depending on parameter specification.14

When is optimal public debt positive? We now show that in addition to a positive
capital tax, this model can generate a positive amount of public debt. This is stated in
the following result, proved in Appendix A.11.

Result 1 There exists a threshold gpos defined in equation (114) of Appendix A.11, such
that steady-state public debt is positive, B ≥ 0, iff g1 ≤ 0 and G ≤ gposYFB.

13One can check that τK/τL increases with the discount factor β and the Frisch elasticity.
14When β increases from below towards 1, equation (35) would imply that the capital tax would increase

without limit relative to the labor tax. However, the equilibrium does not exist in this case. More precisely,
we find that the Straub-Werning threshold decreases and gSW < g1, implying that there is no steady-state
equilibrium for any G (see equations (92) and (93) in Appendix).
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The joint positivity of public debt and capital tax is not obvious: why would the
planner provide more public debt to the market (more liquidity in the sense of Woodford,
1990) and then tax the return on public debt with a positive capital tax? In an equilibrium
with positive public debt, the equilibrium savings of employed agents are higher than
the optimal capital stock, and the extra savings are absorbed by the public debt. From
this allocation, decreasing public debt would inefficiently increase the capital stock, and
would further require an increase in the capital tax to reduce savings, which would hinder
consumption smoothing. Thus, public debt enables the planner to absorb the excess of
savings and reconcile the high savings of private agents with the optimal capital stock
without affecting consumption smoothing.

KPR utility function

We consider the KPR utility function (King et al., 1988), for which we use the following
standard functional form:

U(c, l) = (cγ(1− l)1−γ)1−σ

1− σ , σ > 0, σ 6= 1, 0 < γ < 1,

and U(c, l) = γ log(c) + (1− γ) log(1− l) if σ = 1. In this case, the IES is 1
1−γ+γσ .

We provide the main results in the following proposition.

Proposition 4 If an interior steady-state with τK > 0 exists, then:

1. The equilibrium allocation satisfies:

1− βR︸ ︷︷ ︸
Smoothing wedge

= FL − w
w︸ ︷︷ ︸

Labor wedge

(1− γ)(σ − 1)le.︸ ︷︷ ︸
Net distribution gain

(36)

2. The Straub–Werning condition always holds.

The proof can be found in Appendix B. Equation (36) provides the equilibrium
relationship between wedges, when the equilibrium with positive capital tax exists. The
first two terms are interpreted as smoothing and labor wedges, as in equation (34) of
the GHH case. The NDG has now a different expression which can be summarized by
preference parameters and the equilibrium labor supply of employed agents, le, which
affects the saving of employed agents and thus the next-period utility of unemployed
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agents. The equation (36) of Item 1 can also be written as:

(1− β)τK = τL

1− τL (1− γ)(σ − 1)le,

which means that a steady-state equilibrium with positive capital and labor taxes implies
an IES below 1 (i.e., σ > 1). In Appendix E.1, we provide a numerical example of such
a steady-state equilibrium.15 When the IES is exactly one (σ = 1), the steady-state
equilibrium with binding credit constraint does not exists as τK = 0. Equilibria with an
IES greater than one (σ < 1) may exist for some parametrizations but they will feature
negative labor taxes.

Item 2 stipulates that the Straub-Werning condition is always verified with KPR utility
function. The existence of a steady-state equilibrium is thus only subject to a non-first-best
condition and a Laffer condition. We provide the full characterization of the allocation in
Proposition 9 of Appendix B.

Separable utility function and utilitarian Planner

We now focus on the separable utility function of the form U(c, l) := u(c) − v(l), with
u′ > 0, u′′ < 0, v′ ≥ 0, v′′ ≥ 0. First, we provide general results before focusing on
specific separable utility functions. Define as εu(c) := − cu′′(c)

u′(c) > 0 the relative risk
aversion coefficient for consumption level c. In this environment, it is more convenient to
think about εu(c) as the inverse of the intertemporal elasticity of substitution. Similarly,
εv(l) := lv′′(l)

u′(l) > 0 is the curvature of the disutility of labor at l. We now provide the main
result.

Proposition 5 An interior steady-state solution (ce, cu, le) with τK > 0 (if it exists) must
satisfy the following conditions.

1. Equilibrium allocation

1− βR︸ ︷︷ ︸
Smoothing wedge

= FL − w
w︸ ︷︷ ︸

Labor wedge

εu(cu)− εu(ce)
εu(ce) + εv(l) .︸ ︷︷ ︸

Net distribution gain

(37)

2. The Straub–Werning condition is

εu(cu)− εu(ce)
u′(ce) (1− εu(ce))− u′(cu) (1− εu(cu))

> 0.
15The case with an IES below 1 is the one considered by Dyrda and Pedroni (2022) and thus does not

raise any existence concern in our setup.
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The proof can be found in Appendix C, where we also provide in Proposition 10 a full
characterization of the equilibrium allocation and its existence conditions. Considering
condition (37), the main difference with the previous cases (equations (34) and (36))
is the expression of the NDG. In the separable utility case, the effect of capital tax on
consumption smoothing is captured by the shape of the utility function u, appearing at the
numerator of the NDG. The NDG now captures the difference between the local concavity
of the utility function for unemployed and employed agents; the higher the difference, the
higher the gain of transferring resources from employed to unemployed agents. As there is
a wealth effect on labor supply, the elasticity of the function v appears in the numerator if
the NDG.

The steady-state capital tax can thus be positive under two conditions. First, the
labor tax is positive—and so is the labor wedge—and the NDG is positive. The latter case
holds for instance if u(·) exhibits decreasing relative risk aversion (DRRA).16 Second and
oppositely, the labor tax and the NDG are both negative; the planner chooses to subsidize
labor. A negative NDG can be the consequence of an increasing relative risk aversion
(IRRA) utility function. Below, we derive implications of these findings with different
utility functions.

CRRA utility function. We start with the standard CRRA utility function: u(c) =
c1−σ−1

1−σ if σ 6= 1 or u(c) = log c if σ = 1. That case features εu(cu) = εu(ce) = σ and the
NDG is null. This implies βR = 1 and a zero capital tax in any steady-state Ramsey
allocation. This result shows that a steady-state Ramsey equilibrium with positive capital
tax cannot exist in this case, which is consistent with the KPR utility case when σ = 1
(which is then separable with a constant IES) and the claims of Chen et al. (2020); Auclert
et al. (2022); Chien and Wen (2022b) – the latter provided a general proof considering the
CRRA case.17

Fishburn utility function. A simple DRRA utility function is the one proposed in
Fishburn (1977), which is isoelastic below a threshold and linear after it. More formally,

16In the absence of risk, it would be more precise to write that u exhibits increasing intertemporal
elasticity of substitution. However, we stick here to the more standard denomination.

17In Result 3 of Appendix B.2, we derive a relationship between wedges extending (37) to non-separable
utility functions, thereby nesting the KPR and separable utility functions. It makes it clear that the
separable constant IES utility has the peculiar feature of imposing a zero capital tax and hence ruling out
the existence of an equilibrium with binding credit constraint.
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v(l) = χ−1 l1+1/ϕ

1+1/ϕ , and

u(c) =


c log

(
c

c

)
if 0 < c ≤ c,

c− c if c ≤ c,

where ϕ > 0 is the Frisch elasticity of labor supply, χ > 0 scales labor disutility, and
c > 0 is a threshold. The function u is continuously differentiable on R∗+, with u′(c) = c

c

if 0 < c ≤ c, and u′(c) = 1 if c ≤ c. This utility function was used by Challe and Ragot
(2016) and LeGrand and Ragot (2018) because it generates tractable models.

Assuming ce > c > cu, which must be checked in equilibrium, we have εu(ce) = 1,
εu(cu) = 0, and εv(l) = 1/ϕ that can be plugged into (37) to obtain a relationship between
capital and labor taxes. In Appendix E.2, we detail the system characterizing the Ramsey
allocation and its existence conditions. We also provide a numerical example satisfying all
equilibrium conditions.

Stone–Geary utility function. Another example of a simple DRRA utility function is
the Stone–Geary one, which can be written in the separable case as U(c, l) = (c−c)1−σ−1

1−σ −

χ−1 l1+ 1
ϕ

1+ 1
ϕ

, where when σ = 1, the first term should be substituted by log(c − c). The
term c is a minimum consumption level, and σ, χ, ϕ > 0 are positive parameters whose
interpretation has already been discussed. In this case, εu(c) = −cu

′′(c)
u′(c) = σc

c−c is decreasing
in c > c, while εv(l) = 1

ϕ
is constant. Again, these expressions can be plugged into (37) to

obtain the wedge relationship. As in the Fishburn case, in Appendix E.3 we provide the
characterization of the Ramsey allocation and a numerical example of an equilibrium with
positive taxes and binding credit constraints.

CARA utility function. Finally, the CARA case corresponds to the utility functions
u(c) = − 1

γ
e−γc and v(l) = 1

χϕ
eϕl, where γ, ϕ > 0. We then have εu(c) = γc and εv(l) = ϕl,

which are both increasing. Similar to the two previous cases, in Appendix E.4 we provide
the characterization of the equilibrium allocation and a numerical example of an equilibrium
with binding credit constraints. Because the utility function is IRRA, the equilibrium
allocation features positive capital tax, labor subsidy, and negative NDG.
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Non-utilitarian planner

Stationary Ramsey equilibria with positive capital tax can also exist because of deviations
from the utilitarian SWF. In this subsection, we focus on the CRRA utility function, for
which no steady-state Ramsey equilibrium with positive capital tax exists with a utilitarian
SWF. We relax the assumption of a utilitarian SWF and assume that the planner considers
the following objective:

∞∑
t=0

βt (u(ce,t)− v(le,t) + ωu(cu,t)) ,

where ω is the weight for unemployed agents, u(c) = c1−σ−1
1−σ if σ 6= 1 or u(c) = log c if

σ = 1, and v(l) = χ−1 l1+ 1
ϕ

1+ 1
ϕ

. The following proposition summarizes our main result.

Proposition 6 An interior solution (ce, cu, le) (if it exists) must satisfy the following sets
of conditions.

1. The allocation satisfies:

ω − βR︸ ︷︷ ︸
Smoothing wedge

= FL − w
w︸ ︷︷ ︸

Labor wedge

ω(1− εu(ce))− (1− εu(cu))
εu(ce) + εv(le)

.︸ ︷︷ ︸
Net distribution gain

(38)

2. The Straub–Werning condition is ω < 1.

The proof can be found in Appendix C.3, where we also provide in Proposition 11 a
formal characterization of the allocation and equilibrium existence conditions. Proposition 6
provides a wedge equation (38) in the case of states that a non-utilitarian planner. This
equation falls back on the separable case when the weight of unemployed is set to one.
The proposition also states that a Ramsey equilibrium with positive capital tax can exist
if ω < 1. The intuition is that in this simple setup, the utilitarian planner chooses a zero
capital tax. A positive capital tax, which is actually paid by agents in the unemployment
state, thus requires lowering the weight of those agents in the planner’s objective.

In Appendix E.5, we provide a numerical example that illustrates the existence of an
equilibrium with positive capital tax with CRRA utility function and a non-utilitarian
planner.
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3.2 Dynamic Analysis of Public Debt in Simple Models

We now study the dynamics of public debt after a public spending shock to prove the
second main result of the paper (after the one on equilibrium existence), which is the
relationship between the dynamics of public debt and the persistence of the aggregate shock.
Because the goal with the simple model is to provide clear analytical characterization, we
focus here on the GHH utility function and discuss other ones in the last paragraph of
this section.

In addition, to simplify the algebra, we focus on the case with full capital depreciation:
δ = 1.

Time consistency. In the GHH case with log period utility (17), the program of the
planner is time-consistent, although capital is fixed at the period 0 and capital taxes are
chosen at period 0 (which is not the case for other utility functions, as discussed below
and in LeGrand and Ragot, 2022b). Indeed, in this case, and when credit constraints bind,
the saving of employed agents does not depend on the post-tax real interest rate, but only
on the post-tax real wage (see equation 65in Appendix A.5). 18.

Linearization. We denote with a hat the relative deviation to the steady-state value:
x̂t = xt−x

x
for generic variable xt with steady-state value x. The public spending shock is

assumed to be defined as follows:

Ĝt =

Ĝ0 if t = 0,

ρGĜt−1 if t > 0,
(39)

with Ĝ0 small enough for a first-order approximation of the dynamics to be relevant, and
ρG ∈ (−1, 1). The shock only happens at date t = 0 and then persists with parameter ρG,
as is consistent with our assumption of an MIT shock.

Characterization of the system stability. Our first result is to characterize the
stability of the dynamic system characterizing the Ramsey allocation, using the FOCs
of the planner. Interestingly, the dynamic of the Ramsey allocation can be summarized
by the capital as a unique state variable and the public spending shock. Our first result
characterizes the dynamic of the capital stock.

18More precisely, the Lagrange multipliers of the Euler equations in the previous period do not affect
the current period allocation. See Appendix A.6.
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Result 2 The optimal dynamic of the capital stock is given by the following system:

K̂t = ρKK̂t−1 + σKĜt, (40)

where ρK > 0, σK < 0, ρK do not depend on ρG and ∂σK
∂ρG

> 0.

See Appendix D.1 for the expressions of the coefficients and computations. Thus at
impact, an increase in public spending diminishes capital, and the higher the persistence
of the public spending shock, the stronger the effect.

The dynamic system (40) is stable when the auto-regressive coefficient ρK is smaller
than one in absolute value. In our setup, this is equivalent to verifying Blanchard–Kahn
conditions. The result regarding system stability is summarized in the following proposition.

Proposition 7 The system (40) is stable, i.e., |ρK | < 1, iff

α ≤ 1
1 + (1− β)(1 + ϕ) . (41)

The dynamic system is stable under condition (41), which imposes an upper bound
on α. Note that this upper bound is always strictly smaller than one and hence can
be binding. This condition on α always holds when public debt is positive, i.e., when
g1 < 0. This fourth condition, called Blanchard-Kahn, guarantees the dynamic stability of
the equilibrium with positive capital tax, while the three previous ones (non-first-best,
Straub–Werning and Laffer ones) ensure the existence of the steady-state equilibrium.

By induction, we can derive from (39) and (40) the closed-form expression of the
optimal capital impulse response function:

K̂t = σKĜ0
ρt+1
K − ρt+1

G

ρK − ρG
, (42)

which allows us to characterize completely the capital path following a public spending
shock. At impact and after a positive shock (Ĝ0 > 0), the relative variation of capital
is always negative by a quantity σKĜ0 < 0. Then, the profile of the capital variation is
hump-shaped: it starts decreasing further, before increasing and reverting back to zero
(see Appendix D.2 for further characterization of the dynamics of the capital stock)

Role of the persistence of the public spending shock ρG on public debt. From
the expression of capital (42), it is possible to derive the explicit expression for the optimal
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dynamics of public debt:

B̂t = Ĝ0(ΘKρtK −ΘGρtG), (43)

where the coefficients ΘK ,ΘG are functions of the parameters of the model but not of Ĝ0

and are provided in equations (186) and (187) of Appendix D.2. These parameters can
be either positive or negative. As a consequence, on impact, the change in public debt,
B̂0 = Ĝ0(ΘK −ΘG), after a positive public spending shock (Ĝ0 > 0) can be either positive
or negative, because the sign ΘK −ΘG is ambiguous. We can characterize the effect of the
persistence of the shock on the initial change of public debt, considering two cases. First,
we analyze the effect of ρG with fixed Ĝ0 to understand the mechanisms. Our second
experiment focuses on studying the effect of ρG while keeping the public spending NPV
unchanged. More formally, we keep unchanged the following quantity denoted by ˆNPV0:

ˆNPV0 =
∞∑
t=0

Ĝt

Rt
= Ĝ0

∞∑
t=0

(
ρG
R

)t
= Ĝ0

R

R− ρG
.

Keeping the NPV unchanged while changing ρG implies setting the initial size of the shock
to Ĝ0(ρG) = ˆNPV 0

R−ρG
R

. This is summarized in the following proposition.

Proposition 8 Assume that the steady-state public debt is positive: B > 0. Denoting by
B̂0 the public debt variation on impact, we have

∂B̂0

∂ρG

∣∣∣∣∣
Ĝ0

< 0.

Moreover, if we further assume B̂0 > 0, we also have

∂B̂0

∂ρG

∣∣∣∣∣ ˆNPV 0

< 0.

See Appendix D.2 for the proof. The intuition that the dynamics of the debt depend
on the persistence of the shock is the following. After a positive public spending shock,
the capital is always falling, but to implement consumption smoothing, the planner does
not want to decrease private saving (which is used by unemployed agents to consume).
Consequently, when the persistence of the shock is low, the planner increases public debt
to provide a store of value to private agents. Then, a small increase in future taxes allows
one to reduce the public debt. When the persistence is high, this strategy is very costly in
terms of welfare, because the fall of the capital stock is persistent, and the planner would
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have to increase taxes to reduce public debt in periods when capital and output are low.
Consequently, the planner does not increase public debt to avoid having to raise taxes in
the future to stabilize the public debt.

Figure 1: Examples of the dynamics of fiscal variables for a shock with the same net
present value and persistences ρG = 0.3 (black line) and ρG = 0.9 (blue dashed line) for
the parameters α = 0.3, β = 0.7, ϕ = 0.3, δ = 1, G = 0.01, χ = 1.Variables are plotted in
level, 20 periods after the MIT shock. Optimal steady-state capital tax is 5.85%, labor
tax is 3.33%, public debt-to-GDP is 0.16%.

We check with a simple numerical example that the result of Proposition 8 still holds
when we consider a non-marginal variation in the persistence. Figure 1 plots the illustrative
dynamics of the economy and of the instruments of the planner for two shocks with the
same NPV but different persistences, the initial size of the shock Ĝ0 being adjusted. The
parameters are α = 0.3, β = 0.7, ϕ = 0.3, δ = 1, G = 0.01, χ = 1, and one can check that
ḡ1YFB < G, G ≤ gSWYFB, and G < gLaYFB. This economy has an equilibrium capital tax
of 6%, a labor tax of 3%, and a (small) positive public debt. The low-persistence economy
with ρG = 0.2 corresponds to the black solid line, while the high-persistence economy with
ρG = 0.9 corresponds to the blue dashed line.

Panel 1 plots the increase in public spending. For the increase to be the same in NPV,
it increases by 1% on impact in the case of low persistence and by 0.44% in the case of high
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persistence. Panel 2 plots the increase in µ, the social value of public liquidity (i.e., the
Lagrange multiplier on the government budget constraint). When the persistence is low,
the increase is higher on impact but much less persistent compared to the high-persistence
case. Panel 3 plots the capital tax, and panel 4 the labor tax. When the persistence is low,
both capital and labor taxes increase more on impact but are much less persistent. Capital
tax increases by one order of magnitude more than the labor tax on impact, to front-load
the adjustment, because period-0 capital taxes are not distorting (see Farhi, 2010 for
a discussion of a similar result with complete insurance markets). However, to avoid
reducing the resources of credit-constrained agents, the planner does not fully front-load
the adjustment and the labor tax is used on the whole transition. Labor taxes are barely
increasing in both economies. Consequently, there is a long-lasting increase in both capital
and labor taxes when the persistence is high. Therefore, any further increase in taxes
would be very costly. This creates a strong incentive not to increase public debt, to avoid
a higher interest repayment and hence higher taxes. As can be seen in panel 5, public
debt increases in the low-persistence economy whereas it decreases in the high-persistence
economy. Finally, panel 6 plots aggregate consumption, which falls in both cases, much
more so when the persistence is low, but it returns much faster to its steady-state value.

Other utility functions. One can also check that the result of Proposition 8 and the
public debt pattern of Figure 1 do not depend on the specification of the utility function.
In particular, it also holds in the CRRA case with non-utilitarian planner of Section 3.1.
However, rather than focusing on the simple two-agent model, we focus directly on a
model that allows one to consider a realistic calibration (and relaxes Assumption A).

4 The General Model

4.1 Description and First-order Conditions of Ramsey Planner

We now solve for the Ramsey allocation for the general model of Section 2. We thus dispose
of the simplifying assumptions of Section 3: the period utility function is separable in labor
and consumption (U(c, l) = u(c) − v(l)), the productivity process features an arbitrary
number of levels and a general transition matrix, the labor tax has an HSV functional
form Tt(w̃yl) := w̃yl − κt(w̃yl)1−τt , and Pareto weights depend on current productivity
level (ω(yit))i.

The Ramsey program involves choosing the fiscal instruments (τKt , κt, τt, Bt)t≥0 (as a
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function of the realization of the aggregate shock and of the initial distribution of the
state variables of agents) that correspond to the competitive equilibrium with the highest
aggregate welfare. Formally, the Ramsey program can be written as follows:

max
(rt,wt,Bt,Kt,Lt,(ait,cit,lit,νit)i)t≥0

∞∑
t=0

βt
ˆ
i

ω(yit)(u(cit)− v(lit))`(di), (44)

Gt +RtBt−1 + (Rt − 1)Kt−1 + wt

ˆ
i

(yitlit)1−τt`(di) = F (Kt−1, Lt) +Bt (45)

for all i ∈ I: ait + cit = Rta
i
t−1 + wt(yitlit)1−τt , (46)

ait ≥ −ā, νit(ait + ā) = 0, νit ≥ 0, (47)

u′(cit) = βEtRt+1u
′(cit+1) + νit , (48)

v′(lit) = (1− τt)wtyit(yitlit)−τtu′(cit), (49)

Kt +Bt =
ˆ
i

ait`(di), Lt =
ˆ
i

yitl
i
t`(di). (50)

The constraints guarantee that the governmental budget is balanced in (45) and that
the planner actually selects a competitive equilibrium characterized by individual budget
constraints (46), individual Euler equations (48) and (49), individual credit and positivity
constraints (47), market clearing conditions (50), and factor price definitions (1), (4), and
(5).19

We denote as βtλic,t the Lagrange multiplier on the period-t Euler equation of agent i,
equation (48). When the credit constraint of agent i is binding, we have ait = −ā and
λic,t = 0 because the Euler equation is not a constraint. When the credit constraint does
not bind, the equilibrium can feature either λic,t > 0 or λic,t < 0 depending on whether
the agents save too much or too little as seen from the planner’s perspective. Similarly,
we denote by βtλil,t the Lagrange multiplier on the labor supply (49), and by βtµt the
Lagrange multiplier on the government budget constraint (45).

To save place, we derive the FOCs of the planner in Appendix F. Note that we follow
the literature and assume that the solution is interior and that the FOCs of the planner
are sufficient to characterize the optimal allocation. We provide some quantitative checks
below.

To simplify the interpretation of the FOCs of the Ramsey program, we introduce the
19We solve this program using a factorization approach as presented by LeGrand and Ragot (2022a). We

show that this method can be used with occasionally binding credit constraints, taking limits of smooth
penalty functions. In addition, the signs of the Lagrange multipliers on Euler equations are analyzed.
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marginal social valuation of liquidity for agent i, defined as

ψit := ωitu
′(cit)−

(
λic,t − (1 + rt)λic,t−1

)
u′′(cit) (51)

− λil,t(1− τt)wt(yit)1−τt(lit)−τtu′′(cit).

This complex expression has a simple interpretation. It is the value for the planner of
transferring one unit of resources to agent i (if it could). First, the extra unit is valued by
the marginal utility weighted with the proper factor ωitu′(cit). Second, this extra unit of
resources also affects the savings incentives, both from period t− 1 to t (term in λic,t−1)
and from period t to t+ 1 (term in λic,t). Finally, this unit also modifies the labor supply
incentives (term in λil,t). These last two effects are weighted by the variation in marginal
utility of consumption, u′′(cit).

From equation (51), we also define the marginal value of public funds financed by
agent i:

ψ̂it := µt − ψit, (52)

which is the generalization of ψ̂et and ψ̂ut of equations (28) and (29). With this notation,
the FOCs of the planner are easily interpreted. First, for an unconstrained agent i, the
planner implements a public-funds smoothing condition:

ψ̂it = βEt[Rt+1ψ̂
i
t+1], (53)

where the expectation is taken with respect to the idiosyncratic risk. Equation (53) is a
generalized version of the Euler equation (10) (and is actually the same equation when all
Lagrange multipliers are zero and all weights are set to 1), in which the planner internalizes
in the definition of ψ̂it the general equilibrium externalities when setting individual savings.
For credit-constrained agents, we have λit = 0, and the Euler equation is not a constraint.

Here we present FOCs related to the fiscal tools.20 The FOC with respect to public
debt can be written as

µt = β(1 + r̃t+1)µt+1 (54)

without an expectation operator because of the MIT shock assumption. Equation (54)
shows that the planner aims at smoothing the shadow cost of the government budget
constraint through time. This yields the modified golden rule at the steady state.

The other FOC with respect to the post-tax interest rate captures the effect of a change
20See equation (190) in Appendix F.1 for the FOC with respect to labor supply.
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in capital tax:
ˆ
j

ψ̂jta
j
t−1`(dj)︸ ︷︷ ︸

Net distributive gain

=
ˆ
j

λjc,t−1u
′(cjt)`(dj).︸ ︷︷ ︸

Cost on savings incentives

(55)

The change in capital tax generates benefits for the government through the taxation of
heterogeneous households. Because the capital tax is levied on agents’ asset holdings, the
benefits are proportional to their beginning-of-period wealth, which is the net distributive
effect (which is the term at the left-hand side (LHS)). These benefits are set equal to the
costs, which operate through the savings incentives. From the planner’s perspective, these
costs depend on the Lagrange multiplier λjc,t−1 on the Euler equation of each agent (term
at the right-hand side (RHS)).

The FOC on post-tax wages captures the effect of a change in the linear labor tax
schedule:

ˆ
j

(yjt ljt )1−τtψ̂jt `(dj)︸ ︷︷ ︸
Net distributive gain

=
ˆ
j

λjl,t(y
j
t )1−τt(ljt )−τt(1− τt)u′(cjt)`(dj)︸ ︷︷ ︸ .
Cost on labor supply incentives

(56)

As in FOC (55), the benefit of setting the labor tax level consists of public-funds transfers
weighted by the tax base, which is here the labor supply, equal to (yjt ljt )1−τt for each agent j
(LHS). The cost is related to the modification of labor supply incentives that are affected
by labor tax (RHS).

The FOC for the progressivity coefficient τt has a similar interpretation:

0 =
ˆ
j

∂

∂τt

(
(yjt ljt )1−τt

)
ψ̂jt (dj)︸ ︷︷ ︸

Net distributive gain

+
ˆ
j

λjl,t
1
ljt

∂

∂τt

(
(1− τt)yit(yitlit)−τt

)
u′(cjt)`(dj).︸ ︷︷ ︸

Cost on labor supply incentives

(57)

Setting the labor tax progressivity is very similar to setting the labor tax level. Indeed, on
the one hand, benefits are public-funds transfers weighted by the tax base, which is the
term ∂

∂τt

(
(yjt ljt )1−τt

)
. On the other hand, the costs are related to the modification of labor

supply incentives. However, even though setting the average tax level or the progressivity
(coefficient τt) has similar effects, they are two independent instruments because they
affect the distribution of agents differently.

Consistency with the analytical model. In Appendix F.2, we check that the general
approach of this section and the analytical one of Section 3 provide comparable results.
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We proceed in two steps. In Section F.2.1, we verify that the FOCs of the two approaches
are identical, even though the Ramsey problems are formulated differently. Then in
Section F.2.2, we check that the solution of the analytical approach is quantitatively equal
to the limit of the solution of the general approach when the transition matrix converges
to the anti-diagonal matrix of Assumption A (see Figure 6 in appendix).

Quantitative strategy. We now show that the intuitions about the dynamics of public
debt derived in the simple environment of Section 3 are valid when considering a realistic
calibration of the general setup. Because we are interested in the dynamics of the public
debt and not in the optimality of the overall tax system, we use the following strategy.
First, we calibrate standard parameters to obtain a realistic steady-state allocation in
light of the parameters of actual US fiscal policy. Second, following the literature on the
inverse optimum taxation problem (Bourguignon and Amadeo, 2015; Chang et al., 2018;
Heathcote and Tsujiyama, 2021), we estimate an empirically motivated SWF such that
the actual US fiscal policy (before the financial crisis) is optimal for the planner at the
steady state. The gain with this methodology is being able to observe the dynamics of
the tax system considering a quantitatively realistic initial allocation. Starting from this
allocation, we implement period-0 shocks (with different persistences) on public spending
to observe the responses of fiscal instruments. As these shocks are transitory, we can check
that the value of the fiscal tools return to their initial values, which are the optimal ones
in the long run.

Numerical tools. Solving for the dynamics of optimal policies with many tools is a
difficult task in heterogeneous-agents models. Here, we follow the methodology of LeGrand
and Ragot (2022a). The formal algebra is provided in Appendix G.

The main elements of the method can be summarized as follows. In heterogeneous-agent
models, agents differ according to their idiosyncratic history. An agent i has a period-t
history {yi,0, . . . , yi,t}. Let h = (ỹ−N+1, . . . , ỹ−1, ỹ0) be a given history of length N . In
period t, an agent i is said to have truncated history h if the history of this agent for
the last N periods is equal to h: (yi,t−n+1, . . . , yi,t) = (ỹ−N+1, . . . , ỹ−1, ỹ0). The truncation
method aggregates agents with the same truncated history and then expresses the model
in terms of these groups of agents. This generates the so-called truncated model, which
features a finite state space. In the truncated model, the agents’ aggregation assumes
full risk-sharing within each truncated history and thus “forgets” the heterogeneity in
histories prior to the aggregation period (i.e., more than N periods ago). We capture
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this within-truncated-history via additional parameters denoted by “ξs” and that are
truncated-history specific. This construction yields a finite state-space representation that
is exogenous to agents’ choices and thereby allows one to compute optimal policies.21

The previous truncation method is simple to implement, but it has the drawback of
considering many histories, some of which are very unlikely to be experienced by agents. By
the law of large numbers, these histories concern a very small number of agents. LeGrand
and Ragot (2022c) proposed considering different truncation lengths for different histories;
for clarity, we call this method refined truncation and the former one uniform truncation.
Histories that are more likely to be experienced (i.e., larger ones) can be “refined”, meaning
that they can be substituted by a set of histories with higher truncation lengths. For
instance, the truncated history (y1, y1) (N = 2) can be refined into {(y, y1, y1) : y ∈ Y},
where the group of agents who have been in productivity y1 for two consecutive periods is
split into Card(Y) truncated histories. A benefit of this construction is that the number of
histories is a linear function of the maximum truncation length, instead of an exponential
function. A difficulty of the construction is that the set of refined histories must form a
well-defined partition of the set of idiosyncratic histories in each period. The construction
of the refinements is detailed in LeGrand and Ragot (2022c). In what follows, we provide
results and check that they are robust to an increase in the truncation length.

4.2 Calibration

Preferences. The period is a quarter. The utility function is separable in labor U(c, l) =
u(c)− v(l), with

u(c) = c1−σ − 1
1− σ and v(l) = 1

χ

l1+ 1
φ

1 + 1
φ

.

We set the inverse of intertemporal elasticity of substitution to σ = 2, which is a standard
value in the literature. For the disutility of labor, we set a Frisch elasticity for labor supply
of φ = 0.5, which is the value recommended by Chetty et al. (2011) for the intensive margin
in heterogeneous-agent models. The scaling parameter is set to χ = 0.05, which implies
normalizing the aggregate labor supply to 1/3. The discount factor is set to β = 0.99.

21Considering wealth bins is not possible because the savings function and thus the transitions across
wealth bins are endogenous to the planner’s policy. This would imply a fixed point that would be very
hard to solve. LeGrand and Ragot (2022a) showed that the truncated allocation converges to the true one
when the truncation length increases. The question is then quantitative, and LeGrand and Ragot (2022b)
showed that a tractable truncation length provides accurate results. The presentation of the method is
related to LeGrand et al. (2022, Section 4.4)
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Idiosyncratic risk. We focus on a standard AR(1) process: log yt = ρy log yt−1 + εyt ,
where εyt

iid∼ N (0, σ2
y). Following the strategy of Castaeneda et al. (2003), we choose

the parameters (ρy, σy) to target three key moments.22 The first target is the variance
of the logarithm of consumption, which enables us to capture consumption inequality;
Heathcote and Tsujiyama (2021) reported a value of Var(log c) = 0.23. We also target the
log-variance of wages to match income inequality, which Heathcote and Tsujiyama (2021)
found to be Var(logw) = 0.47. The third target is the debt-to-GDP ratio, which allows us
to replicate a realistic financial market equilibrium; we target a value of B/Y = 61.5%,
which is the mean ratio over the period (Dyrda and Pedroni, 2022). Calibrating these
three moments yields ρy = 0.993 and σy = 0.082; these parameters are close to those
from a direct estimation of the productivity process on PSID data, which corresponds to
ρy = 0.9923 and σy = 0.0983 (see Boppart et al., 2018 and Krueger et al., 2018). The data
targets and their model counterparts are reported in Table 1.

Data Model

Variance of log consumption Var(logc) 0.23 0.20
Variance of log income Var(logy) 0.47 0.48

Debt-to-GDP ratio B/Y 61.5% 61.4%

Table 1: Model calibration: targets and model counterparts.

This simple representation does a good job in matching the three targeted moments.
Furthermore, we can check that this calibration generates a reasonable wealth distribution,
even though we do not calibrate it explicitly.23 Indeed, the calibrated model implies a Gini
coefficient of wealth equal to 0.66, which is close—albeit below—its empirical counterpart
of 0.77. It is known that additional model features must be introduced to match the high
wealth inequality in the US, such as heterogeneous discount rates (Krusell and Smith,
1998), entrepreneurship (Quadrini, 1999), or stochastic financial returns, which are not
considered here.

22More precisely, we minimize the quadratic difference between the model-generated moments and their
empirical counterpart, following the simulated method of moments (SMM). In the present environment,
we see this procedure as a “sophisticated” calibration rather than an actual SMM because we weight the
three moments equally.

23For the problem under consideration, we consider that matching the dispersion of consumption may
be more important than the distribution of wealth, which motivates the exclusion of this moment from
our calibration strategy. It is possible to match the wealth distribution more closely, but at the cost of a
worse match of the moments of the consumption distribution.
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Finally, we discretize the productivity process using the Rouwenhorst (1995) procedure
with seven idiosyncratic states.

Technology. The production function is Cobb–Douglas: F (K,L) = KαL1−α− δK. The
capital share is set to α = 36% and the depreciation rate to δ = 2.5%, as in Krueger et al.
(2018) among others.

Taxes and government budget constraint. The capital tax is taken from Trabandt
and Uhlig (2011), who used the methodology of Mendoza et al. (1994) on public finance
data prior to 2008. Their estimation for the US in 2007 (before the financial crisis) yields
a capital tax (including both personal and corporate taxes) of τK = 36%. For labor, we
consider the HSV functional form of equation (2). The progressivity of the labor tax is
taken from Heathcote et al. (2017), who reported an estimate of τ = 0.181. We choose κ
to match a public-spending-to-GDP ratio of 19%, as in Heathcote and Tsujiyama (2021).

Table 2 summarizes the model parameters.

Parameter Description Value

Preference and technology

β Discount factor 0.99
α Capital share 0.36
δ Depreciation rate 0.025
ā Credit limit 0
χ Scaling param. labor supply 0.05
ϕ Frisch elasticity labor supply 0.5

Shock process

ρy Autocorrelation idio. income 0.993
σy Standard dev. idio. income 0.082

Tax system

τK Capital tax 36%
κ Scaling of labor tax 0.75
τ Progressivity of tax 0.181

Table 2: Parameter values in the baseline calibration. See text for descriptions and targets.
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4.3 Truncation and Estimating Pareto Weights

The model resolution relies on the truncation method that is explained in Section 4.1. To
investigate the optimal dynamics of the instruments after a shock, we start by deriving an
exact truncated representation of the steady-state model, then we follow the dynamics of
the truncated representation using perturbation methods. In Appendix G, we provide a
detailed account of the computational implementation, which is of independent interest
because solving such Ramsey problems is not straightforward.

The refined truncation length is set to N = 20, which is shown to provide an accurate
representation of the dynamics in the robustness check of Appendix I. We consider 350
relevant histories. We have to estimate the weights of the SWF such that the FOCs
of the planner at the steady state are consistent with the actual US tax system (as
described in Section 4.2). However, the problem is generally under-identified because we
have only three constraints (one for the capital tax and two for the labor tax) but seven
different weights (one per productivity level). Following Heathcote and Tsujiyama (2021),
we introduce productivity weights that depend on the productivity level and define a
parametric quadratic representation of weights as follows:

logωy := θ1 log y + θ2 (log y)2 .

As explained in Appendix G, matching capital and labor tax yields θ1 = 0.93 and
θ2 = 0.33. In an environment without savings, Heathcote and Tsujiyama (2021) estimated
the relationship logωy = θ log y and found a positive value θ = 0.517. The quantitative
difference comes mostly from the additional instruments that we use.24

4.4 Model Dynamics

We now simulate the optimal dynamics of the four fiscal tools (τKt , Bt, κt, τt) after a public
spending shock occurring in period t = 0. The dynamics of the shock are the same as in
equation (39) of the analytical section.25 After an initial shock in period 0, public spending

24We cannot strictly reproduce the specification of Heathcote and Tsujiyama (2021) within our framework
because we need two parameters to match the planner’s FOCs because we have more instruments. The
correlation between the estimated value logωy and log y is 0.61 in our model, which is consistent with the
value in Heathcote and Tsujiyama (2021).

25As discussed above, the period-0 problem is time inconsistent in this economy. To avoid the effect of
a re-optimization shock in period 0, we report the result following the timeless perspective: The Lagrange
multipliers of all constraints entering the FOCs of the planner are initialized to their steady-state values.
As a consequence, the dynamics below represent the sole effect of a public spending shock. Conversely, a
pure re-optimization shock would be a period-0 shock where Lagrange multipliers entering the FOCs of
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reverts back to equilibrium at a rate ρG.

Dynamics of the instruments as a function persistence. We simulate the model
for two values of the persistence of public spending shocks while keeping the NPV constant.
The higher value is ρG = 0.97, which is the value used by Farhi (2010) on US data. The
lower value is ρG = 0.7, which corresponds to some specific transitory increase in public
spending in the US, such as episodes of military build-ups. The initial size of the shock is
adjusted for the NPV of public spending to be the same in the two economies. Results are
plotted in Figure 2, which reports public spending shock G and Lagrange multiplier µ in
proportional deviations, labor tax level κ, labor tax progressivity τ , and capital tax τ k in
level deviations, and finally public debt B in proportional deviations. The high-persistence
economy is plotted with blue dashed lines, while the low-persistent one is plotted with
black solid lines.

Panel 1 represents the dynamics of public spending, G, which increases by 1% of GDP
when ρG = 0.7 (black solid line) and by 0.12% of GDP when ρG = 0.97 (blue dashed line),
for the NPV to remain the same. Panel 2 plots the value of the Lagrange multiplier (in
proportional deviation), which represents the marginal value of additional public resources.
Panels 3–5 report the labor tax level, labor tax progressivity, and capital tax (in level
deviations). In our tax schedule, an increase in κ (panel 3) corresponds to a decrease
in the labor tax (as agents receive more labor income). An increase in τ (panel 4) is an
increase in the progressivity of the labor tax.

First, after a public spending shock, capital tax increases (panel 5), and the planner
reduces labor tax (panel 3) but increases progressivity (panel 4) to levy some resources.
Note that the change in the capital tax is one order of magnitude higher than the change
in the labor tax. In addition, the higher the persistence, the smaller the change in
these variables. However, whereas the public spending path is very different for the two
persistence levels (panel 6), the change in taxes is less so. Consequently, public debt
increases when the persistence is low, which facilitates financing the sharp increase in
public spending in the first periods, whereas public debt decreases when the persistence is
high because of a front-loading of the cost of the new public spending.

To summarize, in both cases (high and low persistence), the planner implements a
significant increase in capital taxes for a few quarters. Labor tax moves much less, with

the planner are set to 0 in period 0, without any public spending shock, to observe how time-inconsistency
makes the planner deviate from steady state before converging back to it. This exercise is performed in
LeGrand and Ragot (2022b).
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Figure 2: Dynamics of selected variables for two shocks with different persistence but
the same NPV. G—public spending; µ—value of public resources; κ—level of labor tax;
τ—progressivity of labor tax; τ k—capital tax; B—public debt. The black solid lines
correspond to persistence ρG = 0.7, and the blue dashed lines correspond to persistence
ρG = 0.97. G is in percent of GDP, B is in proportional deviations, and other variables
are in level deviations.

a small decrease in the overall level and a small increase in progressivity. The increase
in capital tax and progressivity is smaller when the persistence is higher (for the same
NPV). Public debt exhibits much more persistent deviations than do other variables. It
can either decrease or increase depending on the persistence, consistent with the analytical
results of Section 3.2.

Allocation and comparison with the first-best outcome. Figure 3 plots the dy-
namics of output Y , capital K, labor L, and consumption C, all in proportional deviations,
for the two levels of persistence. Panel A reports results for the low-persistence case
(ρG = 0.7), and panel B reports results for the high-persistence case (ρG = 0.97). In both
figures, the dotted line is the first-best allocation (in proportional deviation) for the same
shock. The first-best allocation is defined as the complete market economy where the
planner maximizes aggregate welfare solely subject to the resource constraint (thereby
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assuming that it has access to lump-sum taxes, as in the standard real business-cycle
model). Pareto weights do not affect the dynamics in this first-best case, but only the
intra-period allocation.

A. Low persistence ρG = 0.7

B. High persistence ρG = 0.97

Figure 3: Optimal output Y , capital K, labor L, and consumption C for low and high
persistence values, in proportional deviations. The dotted line is the first-best allocation
for both persistence values.

Consumption and the capital stock fall in all cases, but much more so when the
persistence is low. Total labor supply increases on impact (because of a negative wealth
effect for households), as does output. One can observe that the volatility and the
persistence of the market economy for both low and high persistence values are higher than
in the first-best economy, although the dynamics of variables are qualitatively similar.26

26It is also possible to compute the dynamics of the allocation with complete markets (representative-
agent case) but with distorting taxes. It is known (from Chari et al., 1994, Chari and Kehoe, 1999, and
Farhi, 2010, among others) that the optimal steady-state outcome features (i) a null capital tax, (ii) a
government holding the whole capital stock (public debt thus being negative), and (iii) a labor set to
finance the share of public spending, which is not financed by interest payment on the capital stock. After
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Optimal path of public debt and persistence of the shock. In Figure 4, we plot
the optimal debt dynamics for four persistence levels of the public spending shock, with a
normalization of the initial shock G0 to generate the same NPV of public spending. We
report only the path of public debt, because the paths of other instruments are similar to
those presented in Figure 2.

We observe in Figure 4 that the deviation of public debt decreases with the persistence.
When the persistence is very small (ρG = 0.01), public debt increases on impact and then
decreases monotonically. For higher persistence (ρG = 0.7), the path of public debt has
an inverted U shape which then becomes J-shaped for higher persistence (ρG = 0.97). In
other words, persistent public spending shock should be financed by taxes and not by
public debt.

Figure 4: Comparison of optimal public debt dynamics for different persistence values of the
public shock (same NPV of public spending), in proportional deviation from steady-state
value of public debt.

Robustness of the truncation method. Finally, to check the accuracy of the trun-
cation method, we compute the simulation outcomes for a truncation length of N = 25
instead of N = 20 in the benchmark case. As shown in Appendix I, the outcomes are

a public spending shock, public debt follows the capital stock. Because this outcome is very different
from the incomplete-market economy (where steady-state public debt is positive), we do not report the
simulation of this economy.
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undistinguishable for both the instruments and the allocation.

5 The Dynamics of US Public Spending Shock

This section documents the fiscal policy following historical public spending shocks of
varying persistence in the United States, in order to assess the relevance of results of the
previous sections. Identifying the perceived persistence of public spending shocks is a
challenging task. The empirical identification of shocks often relies on the assumption of a
common dynamic structure for all shocks.27 For this reason, we consider four events: World
War I, World War II, the Korean War and the Vietnam War. Using the data from Ramey
and Zubairy (2018), we construct the quarterly time series of public spending, normalized
by potential output for each event.28 To identify the perceived persistence of the shock, we
estimate an autoregressive process for each event only after the peak in public spending,
before spending starts to fall continuously. Figure 5 shows the deviation of public spending
after the peak of each event, as a percentage of potential output. We also plot the path of
the estimated process, which roughly matches the data. The estimated persistences show
considerable heterogeneity in their magnitudes. For example, the persistence for World
War I is 0.59, while it is 0.78 for the Korean War, and 0.94 for the Vietnam War. Table 3
lists the events in increasing order of the persistence.

Table 3 shows the events (first column), the estimated persistence (second column),
the key dates (third column), and the share of total spending financed by direct taxes.
This last statistic is taken from Goldin (1980) and Ohanian (1997). The tax share is
estimated as the deviation of taxes from the pre-tax level. Joines (1981) estimates that
the tax increase is mainly due to an increase in capital taxes, which is consistent with the
results of the model.

The financing of the Vietnam War is not reported in Goldin (1980) because it is
particularly difficult to assess. During the Vietnam War, the ratio of public debt to GDP
fell from 45% in 1965 to 32% in 1975. The marginal tax rate on labor rose from 22% in
1965 to 25% in 1969, and the marginal tax rate on capital rose from 49% in 1965 to 54%

27The literature estimates a process for the deviation of public spending from a long-run trend, conditional
on a well-identified public spending shock. The estimation typically assumes a constant process for public
spending, often using a local projection method (see Ramey and Zubairy, 2018 for a recent analysis). Here,
we analyze the impact of differences in persistence by relying on event studies in the spirit of Ohanian
(1997).

28As in Ramey and Zubairy (2018), we normalize macro variables by real potential GDP, based on a
6th degree polynomial fit from 1889:1–2015:4, omitting the Great Depression and World War II. We then
remove a linear trend from the public spending data.
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Figure 5: Public spending, deviation from potential output in percent, for six major
military events. The black circles are data, the red dashed line is the estimated process,
modeled as an AR(1).

in 1969 (Joines, 1981). However, this decline in public debt occurred during a period of
high inflation, following the President Johnson’s Great Society programs and during the
period of oil price shocks. As argued in Bordo and Orphanides (2013), high inflation was
largely the result of an inadequate response by the Fed to negative supply shocks during
this period.

Overall, without assuming that fiscal policy was fully optimally set during these periods,
these historical fiscal episodes are broadly consistent with the model.

6 Conclusion

We have investigated the optimal fiscal policy after a public spending shock in a heterogeneous-
agent model. Our first contribution was to clarify the conditions for relevant equilibria to
exist; the key friction for equilibrium existence is an occasionally binding credit constraint,
which provides a rationale for both positive capital tax and public debt. Our second
contribution was to show that the dynamics of public debt and taxes depend crucially on
the persistence of the public spending shock; public debt is pro-cyclical for low persistence
but countercyclical for high persistence. In the general model, we found that both capital
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Event Quarterly
Persistence Dates Share financed

by direct taxes

Beg. Peak End

World War I 59% 1914:Q3 1918:Q4 1920:Q3 24%
World War II 66% 1939:Q3 1944:Q1 1947:Q1 41%

The Korean War 78% 1950:Q3 1953:Q3 1957:Q1 100%
The Vietnam War 94% 1965:Q1 1968:Q1 1975:Q2 n.a.

Table 3: Estimated persistence of public spending in percent for the six events (in ascending
order) and change in public debt divided by the net present value of public spending.

and labor taxes increase when persistence is high and decrease otherwise. We considered a
quantitative model whereby the actual US tax system is implemented at the steady state
thanks to an inverse optimal taxation approach.
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Appendix

A Properties of the Simple Model, with GHH Utility
Function and Utilitarian Planner

A.1 First-best Steady-State Allocation in the Simple Model

We derive the first-best allocation of the simple model. Considering the utilitarian SWF,
the Lagrangian associated to the program is:

LFB =
∞∑
t=0

βt

log(cut ) + log
cet − χ−1 l

1+1/ϕ
e,t

1 + 1/ϕ


+
∞∑
t=1

βtµt
(
Kt−1 +Kα

t−1l
1−α
e,t − δKt−1 − cet − cut −Gt −Kt

)
,

together with non-negativity constraints cet , cut , le,t ≥ 0, which are not binding. In that
case, it is straightforward to check that the linear independence constraint qualification
(LICQ) holds and the optimization yields a maximum (see Section A.3 below for a lengthier
discussion). Denoting by LFB = le the steady-state labor supply, the FOCs imply the
following equations at the steady state:

KFB

LFB
=
( α

1
β

+ δ − 1
) 1

1−α , (58)

LFB = (χ(1− α))ϕ
( α

1
β

+ δ − 1
) α

1−αϕ, KFB = (χ(1− α))ϕ
( α

1
β

+ δ − 1
) 1+αϕ

1−α , (59)

YFB = (χ(1− α))ϕ
( α

1
β

+ δ − 1
)α(1+ϕ)

1−α , (60)

as well as cu = ce − χ−1L
1+1/ϕ
FB

1+1/ϕ . With the resource constraint (16), we can compute
consumption levels.

A.2 Proof of Proposition 1

The first-best equilibrium is characterized by optimal consumption smoothing and no
inefficient distortion. We now analyze the necessary and sufficient conditions for which the
first-best allocation can be decentralized. Using the Euler equations (19) and (20) with
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equality, one finds:
βRFB = 1, (61)

Distorting taxes are also null: τK = τL = 0, while the government budget constraint (24)
implies that the public debt verifies: BFB = − β

1−βG < 0. To implement the first-best
allocation, we further need to check that no agent is credit-constrained.

Factor prices definitions (1) with (61) and LFB = le = (χwFB)ϕ yield the same capital-
to-labor ratio KFB/LFB as in (58) the same output as in (58), and the same labor supply
and capital as in (59). The wage is equal to:

wFB = (1− α)
( α

1
β

+ δ − 1
) α

1−α . (62)

Furthermore, since agents are unconstrained, Euler equations imply cu,FB = ce,FB − 1
χ

l
1+ 1

ϕ
e,FB

1+ 1
ϕ

,

or after substituting by budget constraints: RFBau,FB−ae,FB+ w(χw)ϕ
ϕ+1 = RFBae,FB−au,FB.

Using (61) and the financial market clearing condition stating that ae,FB + au,FB =
BFB +KFB implies:

21− β
β

au,FB
YFB

= g1 −
G

YFB
, (63)

with g1 defined in (27). The credit constraint au,FB ≥ 0 and equation (63) imply the
first-best condition G

YFB
≤ g1, which concludes the proof of Proposition 1.

A.3 Constraint Qualification

In our problem, even though the objective function is concave, the equality constraints
are not linear and the standard Slater (1950) conditions do not apply. However, we can
check that the linear independence constraint qualification (LICQ) holds in our problem.
This constraint qualification requires the gradients of equality constraints to be linearly
independent at the optimum (or equivalently that the gradient is locally surjective). At
any date t, two constraints matter for the instruments of date t. These are the constraints
at dates t and t+ 1. We can check that their gradient can be written as: 1 ϕ(χwt)ϕ w̃twt − (ϕ+ 1)(χwt)ϕ − β

1+β
wt−1(χwt−1)ϕ

1+ϕ

−r̃t+1 − 1 β
1+β (χwt)ϕr̃t+1 − (Rt+1 − 1) β

1+β
wt(χwt)ϕ

1+ϕ 0

 , (64)
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which forms a matrix of rank 2. Indeed, looking at the first and third columns of the matrix
in (64) makes it clear that a sufficient condition is (1 + r̃t+1)wt−1 6= 0. This condition must
hold at the optimum, since: (i) equation (1) implies r̃t+1 ≥ 0, and (ii) wt−1 > 0.

A.4 Second-Order Conditions

In the program (18)–(26), we use (24) to substitute for the expression of Rt. We can
further use financial market constraint (26) to express Bt as a function of Kt and wt. The
planner’s program can be equivalently rewritten as a function of Kt and Wt = wt(χwt)ϕ:

max
(Kt,wt)t

E0

∞∑
t=0

βt
(

log(Wt)

+ log
(
Kt−1 + F (Kt−1, χ

ϕ
1+ϕW

ϕ
1+ϕ
t )− 1 + ϕ+ ϕβ

(1 + β)(1 + ϕ)Wt −Kt −Gt

))
.

The function (Wt, Kt−1) 7→ F (Kt−1, χ
ϕ

1+ϕW
ϕ

1+ϕ
t ) is concave as the composition of concave

and increasing functions. We thus deduce that the mapping defined by (Wt, Kt−1, Kt) 7→
log (Wt)+ log

(
Kt−1 + F (Kt−1, χ

ϕ
1+ϕW

ϕ
1+ϕ
t )− 1+ϕ+ϕβ

(1+β)(1+ϕ)Wt −Kt −Gt

)
is concave. Any in-

terior optimum characterized by the FOCs must thus be a maximum.

A.5 FOCs Derivation with Binding Credit Constraints

We first derive the FOCs using a direct method and, we then check that the factorization
method yields the same FOCs (see Section A.6). Using individual budget constraints and
log utility, Euler equations (19) becomes:

ae,t = β

1 + β

wt(χwt)ϕ
1 + ϕ

≥ 0. (65)

The Ramsey program can then be written as:

max
{Bt,wt,Rt}

E0

∞∑
t=0

βt
(

log
(

1
1 + β

wt(χwt)ϕ
ϕ+ 1

)
+ log(Rt

β

1 + β

wt−1(χwt−1)ϕ
1 + ϕ

)
)
, (66)

wt+1(χwt+1)ϕ > β2Rt+1Rtwt(χwt)ϕ, (67)

G+Bt−1 + (Rt − 1) β

1 + β

wt−1(χwt−1)ϕ
1 + ϕ

+ wt(χwt)ϕ = Bt (68)

+ F ( β

1 + β

wt−1(χwt−1)ϕ
1 + ϕ

−Bt−1, (χwt)ϕ).
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Note that the Euler inequality for unemployed agents (67) is equivalent at the steady state
to βR < 1, which will always hold in equilibrium (see below).

Defining by convention w−1 as β
1+β

w−1(χw−1)ϕ
1+ϕ = a−1 and by βtµt the Lagrange multiplier

on (68), the FOCs associated to the program (66)–(68) can be written as (for t ≥ 0):

0 = (1 + β)(ϕ+ 1) 1
wt

+ β(χwt)ϕ
β

1 + β
µt+1(FK,t+1 −Rt+1 + 1) (69)

+ χµt(χwt)ϕ−1 (ϕFL,t − (ϕ+ 1)wt) ,

µt = β(1 + FK,t+1)µt+1, (70)

1 = Rtµt
β

1 + β

wt−1(χwt−1)ϕ
1 + ϕ

. (71)

We can take advantage of FOCs (70) and (71) to simplify FOC (69) as follows:

µtwt(χwt)ϕ
(

1− (1 + β)ϕ τLt
1− τLt

)
= (1 + ϕ)(1 + β), (72)

which is a time-t equation only. The only dynamic FOC is the forward-looking equation
(70). We will check that the system is well-defined and does not raise convergence issues.

A.6 Deriving First-Order Conditions with Factorization

We check here that the FOCs do not depend on the resolution method. Denoting λe,t the
discounted Lagrange multiplier on the constraint (19), and using the definitions of ψ̂et and
ψ̂ut of equations (28) and (29), the FOCs of the planner are:

ψ̂et = βRt+1ψ̂
u
t+1, (73)

ψ̂et = −ϕµt
(

1− FL,t
wt

)
, (74)

ψ̂ut ae,t−1 = λc,t−1u
′(cu,t), (75)

µt = βµt+1(1 + FK,t+1), (76)

which fall back on the FOCs (30)–(33) at the steady state.
We check that the FOCs (73)–(76) derived with the Lagrangian method exactly simplify

to the FOCs (69)–(71) of Section A.5. The extra equation is related to the Lagrange
multiplier λc,t. Note that the FOC (76) is identical to (70). Denoting C = c− χ−1 l1+1/ϕ

1+1/ϕ ,
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we obtain that the FOC (74) becomes:

ψ̂ut Cu,t = λc,t−1

ae,t−1
. (77)

Remark. It seems that the previous relationship induces time-inconsistency. However,
this is not the case. Indeed, from (29), we have:

ψ̂ut = µt − u′(cu,t)− λc,t−1Rtu
′′(cu,t),

= µt −
1
Cu,t

+ λc,t−1
Rt

C2
u,t

,

which comes from Cu,t = cu,t − χ−1 l
1+1/ϕ
u,t

1+1/ϕ = cu,t and u = log. Multiplying by Cu,t the
former equality and using Rt = Cu,t

ae,t−1
, we obtain

and

ψ̂ut Cu,t = µtCu,t − 1 + λc,t−1
Rt

Cu,t
,

= µtCu,t − 1 + λc,t−1

ae,t−1
,

which with (77) implies µtCu,t − 1 = 0, for which there is not time-incosistency issue.
FOCs (73), (74), and (77) thus become after substituting the expressions of ψ̂et and ψ̂ut :

µt −
1
Ce,t
− λc,t
C2
e,t

= βRt+1

(
µt+1 −

1
Cu,t+1

+Rt+1λc,t
1

C2
u,t+1

)
, (78)

µt −
1
Ce,t
− λc,t
C2
e,t

= ϕµt

(
FL,t
wt
− 1

)
, (79)(

µt −
1
Cu,t

+Rtλc,t−1
1
C2
u,t

)
ae,t−1 = λc,t−1

Cu,t
. (80)

Using ae,t−1 = Cu,t
Rt

(i.e., the budget constraint of agents u), FOC (80) becomes:

µtCu,t = 1, (81)

with the expression of Cu,t = Rt
β

1+β
wt−1(χwt−1)ϕ

1+ϕ (coming from (65)) is identical to FOC
(71). Using the Euler equation Cu,t+1 = βRt+1Ce,t to substitute for Rt+1 and (81) to
substitute for µt+1, equation (78) becomes after some simplification:

λc,t
Ce,t

= β

1 + β
(µtCe,t − 1). (82)
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Finally, we turn to FOC (79), which, combined with (28) and (82), becomes: (1 +
β)Ce,tµt

(
1

1+β − ϕ
τLt

1−τLt

)
= 1. Using the budget constraint Ce,t = wt(χwt)ϕ

(1+β)(1+ϕ) , the previous
equation falls back on FOC (72) (and hence FOC (69)). This completes the proof that
the Focs are the same.

A.7 Proof of Proposition 2

Note that because of FOC (71), µ = 0 or R = 0 is not possible at the steady state. FOCs
(69)–(71) and governmental budget constraint (68) become at the steady state, where we
denote variables without subscripts:

1
1 + β

µw(χw)ϕ = ϕ+ 1 + µ(χw)ϕϕ(FL − w), (83)

1 = β(1 + FK) (84)

1 = Rµ
β

1 + β

w(χw)ϕ
1 + ϕ

(85)

F ( β

1 + β

w(χw)ϕ
1 + ϕ

−B, (χw)ϕ) = G+ (R− 1) β

1 + β

w(χw)ϕ
1 + ϕ

+ w(χw)ϕ. (86)

Using (85) and w = (1−τL)FL, equation (83) becomes (34). Further using w = (1−τL)FL,
and R − 1 = (1 − τK)FK = (1 − τK)(β−1 − 1) yields: τK = ϕ1+β

1−β
τL

1−τL (equation (35)).
This concludes the proof of Proposition 2.

A.8 Proof of Proposition 3

The Laffer threshold. After several manipulations and using (35) and (84), as well as
the properties of F , the governmental budget constraint (86) implies that τL is a solution
of T (τL) = 0, where:

T :τ ∈ (−∞, 1) 7→ τ − 1
1− α

G
YFB

(1− τ)−ϕ − g1

1 + 1−β
1+β

1
1+ϕ + ϕ

1+ϕ
. (87)

The mapping τ 7→ T (τ) is akin to a Laffer curve. Indeed, we can check that T is
continuously differentiable, strictly concave, with a unique maximum over (−∞, 1). In
consequence, the function T admits either zero, one, or two solutions. The number of
solutions depends on the level of public spending G in (87). When public spending is too
high, there is no level of labor tax that makes this public spending sustainable: T (τ) < 0
for all τ ∈ (−∞, 1). When the public spending is sustainable, T typically admits two
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roots. The smaller root corresponds to a low tax and a high labor supply, while the larger
root corresponds to a high tax and a low labor supply. There is a third case that is the
limit between sustainability and no sustainability. In this situation, there is a unique tax
rate that enables public spending to be financed.

The limit case of the Laffer curve happens when the extremum point of the Laffer
curve is the only root of the function. It can be checked that this corresponds to the tax
level τLLa that verifies T (τLLa) = T ′(τLLa) = 0, or equivalently to:

τLLa = 1
1 + ϕ

− 1
1− α

ϕ

1 + ϕ

g1

1 + 1−β
1+β

1
1+ϕ + ϕ

1+ϕ
. (88)

This corresponds to a ratio of public spending G
YFB

, defined as:

gLa := 1− α
ϕ

(
1 + 1− β

1 + β

1
1 + ϕ

+ ϕ

1 + ϕ

)
(1− τLLa)1+ϕ, (89)

where τLLa is defined in (88) and which can be shown to be always well-defined since
g1 ≥ −1−β

1+β
1−α
ϕ+1 . So, any public spending such that G

YFB
> gLa is not sustainable and cannot

be financed by any tax system.
Oppositely, when G

YFB
< gLa, two different tax levels enable the government to finance

public spending, and the planner will always opt for the lowest tax rate. Indeed, taxes
have an unambiguously negative impact on consumption levels, since: ce = 1

1+β (1 −
τL)ϕ+1wFB(χwFB)ϕ

1+ϕ and cu = (1− (1− β)τK)ce. So larger taxes decrease consumption and
hence individual welfare.

As a conclusion, let us prove that gLa ≥ g1 and more precisely the following lemma.

Lemma 1 We have gLa ≥ g1. The equality only holds if ϕ
1−α

g1
1+ 1−β

1+β
1

1+ϕ+ ϕ
1+ϕ

= 1. Otherwise,
the inequality is strict.

Proof. Note that by construction, gLa ≥ 0. The result thus holds if g1 < 0. We assume
that g1 ≥ 0. Using the definitions of gLa and g1, we have:

gLa − g1
κ

= ( ϕ

1 + ϕ
)ϕ1− α

1 + ϕ
(1 + g1

κ
)1+ϕ − g1

κ
,

with κ = (1 − α)(1 + 1−β
1+β

1
1+ϕ + ϕ

1+ϕ) > 0. The sign of gLa − g1 can be determined
by focusing on the function s : x ∈ R+ 7→

(
ϕ

1+ϕ

)ϕ 1
1+ϕ(1 + x)1+ϕ − x, which is well-

defined and continuously differentiable on R+. We have s′(x) ≥ 0 iff
(

ϕ
1+ϕ

)ϕ
(1 + x)ϕ ≥ 1

or x ≥ ϕ−1. The function s thus admits a minimum for x = ϕ−1, whose value is:
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s(ϕ−1) =
(

ϕ
1+ϕ

)ϕ 1
1+ϕ(1+ϕ

ϕ
)1+ϕ − 1

ϕ
= 0. We deduce that s(x) ≥ 0 and the equality holds

iff x = ϕ−1, which concludes the proof.
Regarding the allocation, we have:

ce = 1
1 + β

w(χw)ϕ
1 + ϕ

, (90)

cu = 1− (1− β)τK
1 + β

w(χw)ϕ
1 + ϕ

. (91)

The Straub-Werning threshold. The relationship (35) does not provide any upper
bound on the capital tax, which diverges when τL becomes close to 100%. However, the
post-tax interest rate sets an implicit bound on the capital tax. Indeed, the post-tax
interest rate must remain positive – otherwise unemployed agents would face negative
consumption. The positivity of the post-tax rate is equivalent to the positivity of the
Lagrange multiplier µ through FOC (85). Equation (91) implies that the capital tax must
remain below a threshold

τKSW := 1
1− β (92)

– where SW stands for Straub-Werning (see the discussion below). This tax threshold
implies an upper bound on the labor tax τLSW (through equation (35)) and also an upper
bound on the level of public spending: G < gSWYFB, where:

gSW := g1 + (1− α)
(

1 + 1− β
1 + β

1
1 + ϕ

+ ϕ

1 + ϕ

)
(1− τKSW )ϕ. (93)

This concludes the proof of Proposition 3.

A.9 The τK = 0-Equilibrium

We prove here that the steady-state equilibrium featuring τK = 0 is always dominated
by the equilibrium featuring binding credit constraint and τK > 0. We write with the
0-subscript the allocation where τK = 0, and with no subscript the allocation where τK > 0.
The proof is split into three parts: (i) the characterization of the τK = 0-equilibrium
(Section A.9.1); (ii) when the τk > 0-equilibrium exists, i.e., when the Straub-Werning
condition holds (Section A.9.2); and (iii) when the τk > 0-equilibrium does not exist, i.e.,
when the Straub-Werning condition does not hold (Section A.9.3).
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A.9.1 Characterization of the τK = 0-Equilibrium

With the same steps as in Section A.2, we have:

w0 = (1− τL)wFB, K0 = (1− τL)ϕKFB, Y0 = (1− τL)ϕYFB. (94)

Governmental budget constraint becomes: B0 = − β
1−βG+ β

1−β τ
L
0 (1− τL0 )ϕwFB(χwFB)ϕ.

Perfect risk sharing (i.e., cu,0 = ce,0 − 1
χ

l
1+ 1

ϕ
e,0
1+ 1

ϕ

) and financial market clearing (i.e., A0 =
K0 +B0) imply after some manipulation:

2au,0
Y0

= β

1− β (g1 − gFB(1− τL0 )−ϕ) +
(

1
1− β + 1

1 + β

1
ϕ+ 1

)
βτL0 (1− α), (95)

2ae,0
Y

= 2au,0
Y

+ 2 β

1 + β

1− α
ϕ+ 1(1− τL0 ), (96)

meaning that ae,0 ≥ au,0 for all values of τL0 ≤ 1. We compute the consumption level cu,0
from individual budget constraint:

2 cu,0
YFB

= (1− τL0 )ϕg1 −
G

YFB
+ 2

1 + β

1− α
ϕ+ 1(1− τL0 )ϕ + ϕ

ϕ+ 1(1− α)τL0 (1− τL0 )ϕ. (97)

Computing the derivative of 2 cu,0
YFB

with respect to the labor tax τL0 yields: 1
ϕ(1−τL0 )ϕ−1

∂
∂τL0

2 cu,0
YFB

=
− (1−β)α

1+β(δ−1) − (1 − α)τL0 < 0, whenever τL0 ≥ 0. We deduce from the last inequality that

cu,0 is decreasing with τL0 (and hence aggregate welfare since cu,0 = ce,0 − 1
χ

l
1+ 1

ϕ
0
1+ 1

ϕ

). Since
ae,0 ≥ au,0 for all values of τL0 , the value of τL0 is chosen as small as possible for credit
constraints not to bind and hence such that au,0 = 0. From (95), τL0 is the solution of:

τL0 = 1
1 + 1−β

1+β
1

ϕ+1

gFB(1− τL0 )−ϕ − g1
1− α , (98)

which is a Laffer-like curve, as (87), admitting 0, 1 or 2 solutions. Finally, regarding
allocation, we have:

cu,0 = ce,0 − χ−1 l
1+1/ϕ
0

1 + 1/ϕ = 1
1 + β

w0(χw0)ϕ
1 + ϕ

. (99)

A.9.2 Case where the τk > 0-Equilibrium Exists

The fact that the planner implements au,0 = 0 in the equilibrium with full risk-sharing
implies that the objective of the planner is actually the same as in the case with binding
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credit constraints. As a consequence, the allocation with τK = 0 and τK > 0 can be
written as the outcome of the same program, with the constraint τK ≥ 0. Formally:

max
{Bt,wt,Rt}

∞∑
t=0

βt
(

(1 + β) log
(

1
1 + β

wt(χwt)ϕ
ϕ+ 1

)
+ log(βRt)

)
(100)

G+Bt−1 + (Rt − 1) β

1 + β

wt−1(χwt−1)ϕ
1 + ϕ

+ wt(χwt)ϕ = Bt (101)

+ F ( β

1 + β

wt−1(χwt−1)ϕ
1 + ϕ

−Bt−1, (χwt)ϕ),

with Rt ≥ 1 + r̃t, where r̃t = FK,t is exogenous. We now show that the previous program
has the desired properties.

We start with the case τK = 0. Denoting by βtµt the Lagrange multiplier associated to
the constraint (101), the maximization with respect to Bt yields: µt = β(1 + FK,t+1)µt+1,

or at the steady state: β(1 + FK) = 1. The constraint (101) implies then at the steady
state, using (58)–(59), that the labor tax, denoted τ̂ l0 verifies:

(1− α)
(

1 + 1− β
1 + β

1
1 + ϕ

)
τ̂ l0 = gFB

(1− τ̂ l0)ϕ − g1, (102)

which is the equation as (98) for τL0 . Since the planner will also choose the lowest solution
for (102), we deduce that τ̂ l0 = τL0 . Consumption levels then mechanically verify equation
(99), which proves that the steady-state equilibrium with τK = 0 is a steady-state solution
of the program (100)–(101) where we impose τKt = 0 at all dates.

We now turn to the unconstrained case (τK 6= 0). In that case, the FOCs of the
program (100)–(101), with respect to Bt, Rt, and wt, respectively, are:

µt = µt+1β(1 + FK,t), (103)

1 = Rtµt
β

1 + β

wt−1(χwt−1)ϕ
1 + ϕ

, (104)

(1 + β)(1 + ϕ)
wt

= µt
wt

((ϕ+ 1)wt(χwt)ϕ − ϕFL,t(χwt)ϕ) (105)

+ βµt+1

wt
(Rt+1 − 1− FK,t+1) β

1 + β
wt(χwt)ϕ,

which are identical to the FOCs (69)–(71) of the unconstrained case.
We therefore deduce that the allocation with τK = 0 is the solution of a constrained

program and is hence dominated by the allocation τk 6= 0 – whenever the latter exists.29

29Note that the argument could not be applied right away from the initial program formulation because
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A.9.3 Case where the τk > 0-Equilibrium Does Not Exist

We now show that an equilibrium with τK = 0 does not exist even when the equilibrium
where τK > 0 does not exist. Assume now that the solution of (87) does not verify the
Straub-Werning condition. We will show that in that case the τk = 0-equilibrium does not
exist either. To do so, we focus on the limit case when the Straub-Werning condition does
not hold, implying that the solution, denoted τLm, to (87) is:

τLm = 1
1 + (1 + β)ϕ. (106)

The argument easily extends to any value τL ≥ τLm (see explanation after equation (108)).
Equation (87) implies that it corresponds to a public spending gFB,0 verifying:

gFB,0(1− τLm)−ϕ = (1− α)
(

1 + 1− β
1 + β

1
1 + ϕ

+ ϕ

1 + ϕ

)
τLm + g1. (107)

To show that the τk = 0-equilibrium does not exist, we show that there is no solution to
(98), and more precisely that, for all τL0 :

τL0 <
gFB,0(1− τL0 )−ϕ − g1

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

) . (108)

The argument we develop would easily extend to any solution τL to (87), such that τL ≥ τLm.
Indeed, these cases would imply public spending levels higher than gFB,0. The equilibrium
non-existence would then be implied by inequality (108).

To show inequality (108), notice that τ0 ∈ (−∞, 1) 7→ gFB,0(1 − τL0 )−ϕ − g1 − (1 −
α)
(
1 + 1−β

1+β
1

1+ϕ

)
τL0 is convex admits a global minimum denoted τL0,min, defined as:

1− τL0,min =
 ϕgFB,0

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

)
 1

ϕ+1

(109)

To prove inequality (108), using (109), we only need to show that ∆ > 0, where

∆ = (ϕ−1 + 1)
 ϕgFB,0

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

)
 1

ϕ+1

− g1

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

) − 1. (110)

with τk 6= 0, the constraint au,t = 0 was binding – which is not present anymore with the modified program
(100)–(101).
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The definition (107) of gFB,0 implies using (106) that (110) becomes:

∆ = (1 + β)(ϕ+ 1)
1 + (1 + β)ϕ

(
2(1 + (1 + β)ϕ)

(1 + β)((1 + β)(1 + ϕ) + 1− β) +
1+(1+β)ϕ

1+β g1

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

)) 1
ϕ+1

(111)

− g1

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

) − 1,

which can be seen as a function of g̃1 = g1
(1−α)(1+ 1−β

1+β
1

1+ϕ) , defined on (− 2
(1+β)(1+ϕ)+1−β ,∞).

This function is concave, admits a unique maximum, (1+β)ϕ
(1+β)(1+ϕ)+1−β > 0, in g̃∗1 =

−2ϕ(1+β)
(1+(1+β)ϕ)((1+β)(1+ϕ)+1−β) . Thus, there exist two (mathematical) bounds denoted g̃inf

1 <

g̃∗1 < g̃sup
1 , such that ∆(g̃1) > 0 iff g̃1 ∈ (g̃inf

1 , g̃sup
1 ). The rest of the proof consists in finding

two economical bounds on g̃1, denoted by g̃min
1 and g̃max

1 and to prove that ∆(g̃min
1 ) > 0 and

∆(g̃max
1 ) > 0. We can then deduce from the properties of the function ∆ that ∆(g̃1) > 0

for all economically acceptable g̃1, which concludes the proof.

Lower bound on g̃1. The definition (27) of g1 = 1−β
β

α
1/β+δ−1 −

1−β
1+β

1−α
ϕ+1 readily implies:

g1
(1−α)(1+ 1−β

1+β
1

1+ϕ) ≥ −
1−β

(1+β)(1+ϕ)+1−β = g̃min
1 , or from (111): ∆(g̃min

1 ) ≥ (1+β)(1+ϕ)
(1+β)(1+ϕ)+1−β

(
(1 +

1
1+(1+β)ϕ)

ϕ
ϕ+1 − 1

)
> 0, where the second inequality comes from β ∈ (0, 1) and ϕ > 0.

Upper bound on g̃1. The upper bound on g̃1 is less straightforward. Equation (107) –
seen as an equation in τLm for a given gFB,0 – admits one or two roots (since by construction
the no-root case is excluded). To guarantee that the smallest solution is chosen, the
derivative of the τ 7→ (1−α)

(
1 + 1−β

1+β
1

1+ϕ + ϕ
1+ϕ

)
τ + g1− gFB,0(1− τ)−ϕ must be positive

in τLm (the function being concave, it has to intercept 0 before it reaches its maximum). Or
equivalently: ϕgFB,0(1− τLm)−ϕ−1 ≤ (1− α)

(
1 + 1−β

1+β
1

1+ϕ + ϕ
1+ϕ

)
. Using (107), we obtain

that this condition is equivalent to:

g1

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

) ≤ 2β
(1 + β)(1 + ϕ) + 1− β = g̃max

1 .

From (111), we obtain, after some manipulations:

∆(g̃max
1 )
τLm

≥ (1 + β)(1 + ϕ)
(1 + ϕ(1 + β)

1 + (1 + ϕ(1 + β))

) 1
ϕ+1

− 1
− β ϕ(1 + β)

(1 + (1 + ϕ(1 + β))) ,

whose left-handside can be seen as a function of ϕ(1+β)
1+(1+ϕ(1+β)) (that lies in (0, 1)). We

denote: ∆̃ : x ∈ (0, 1) 7→ (1 + β)(ϕ + 1)
(
(1 + x)

1
ϕ+1 − 1

)
− βx. Using a second-order
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Taylor development, we have for x ∈ (0, 1): ∆̃(x)
x
≥ 1 − ϕ

ϕ+1
1+β

2 x > 0, where the second
inequality comes from x < 1, β < 1, and ϕ > 0.

A.10 A non-interior steady-state equilibrium

Here we investigate the case when (87) admits a solution that does not verify the Straub-
Werning condition. FOC (70) holds and FOCs (69) and (71) can also be written as:(

1− (1 + ϕ(1 + β))τLt
)

(1− τLt )ϕµtw̃t(χw̃t)ϕ = (1 + β)(1 + ϕ), (112)

(1 + (1− τKt )FK,t)µt(1− τLt−1)ϕ+1w̃t−1(χw̃t−1)ϕ = (1 + β)(1 + ϕ)
β

. (113)

Equation (112) implies that for all t: τLt ≤ 1
1+ϕ(1+β) and τL = limt→∞ τ

L
t ≤ 1

1+ϕ(1+β) . From
(112), there are possibly non-interior steady states, featuring limt µt =∞ or limt w̃t =∞.

First case: limwt = w∗ <∞.

– The case w∗ = 0 is not possible. Otherwise there are no resources to pay G.

– Assume that limµt = ∞, then equation (112) implies limt τ
L
t = (1 + ϕ(1 + β))−1.

Equation (113) then yields limt(1 + (1− τKt )FK,t) = limtRt = 0.

Second case: limtwt = ∞. We thus have limt w̃t = ∞. Using factor price defini-
tions: χw̃t =

(
χ(1−α)

(1−τLt )αϕ
) 1

1+ϕα K
α

1+ϕα
t−1 yields limtKt = ∞ and limt

Kt−1
(χwt)ϕ = ∞. We deduce

limt FK,t = −δ, as well as limt µt =∞, limt τ
L
t = (1 + ϕ(1 + β))−1, and limtRt = 0.

These two non-stationary equilibria feature limt µt =∞ and limtRt = 0.

A.11 Characterization of Positive Public Debt

We prove here Result 1. The financial market clearing condition implies using (65) and
the definition of w: B = (χw)ϕ

(
β

1+β
1−τL
1+ϕ FL −

K
L

)
, which is positive iff: β

1+β
1−τL
1+ϕ > 1

FL

K
L
.

Using the definitions of F and g1, we can simplify 1
FL

K
L

and obtain that B > 0 iff:
τL < −1+ϕ

1−α
1+β
1−βg1. Using (87), we get the equivalent condition gFB(1− τL)−ϕ < gpos, with:

gpos = 1 + β

1− β (1 + 2ϕ)(−g1). (114)
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B Proof of Proposition 4

We consider the utility: U(c, l) = 1
1−σc

γ(1−σ)(1−l)(1−γ)(1−σ). We prove a result that extends
the results of Proposition 4 and provides a full characterization of the equilibrium.

Proposition 9 In the case of a KPR utility function, an interior steady-state solution
(ce, cu, le) with τK > 0 (if it exists) must satisfy the following conditions.

1. Equilibrium allocation definition:
ce − U(ce,le)

U(cu,0) cu = (wFBγ(1− le)− (1− γ)ce) (σ − 1)le,
γ−le
1−leU(ce, le) + βγU(cu, 0) = 0,

G+ cu + ce = yFBle.

(115)

2. The no first-best condition is

0 ≤ KFB

LFB
lFB −

β

1− βG (116)

+ β

1 + β
wFB

(
γ

1− γ
(
1− lFB − (1− lFB)

σ
1+γ(σ−1)

)
− lFB

)
,

where lFB is the unique root of l ∈ R+ 7→ γ
1−γwFB

(
1− l + (1− l)

σ
1+γ(σ−1)

)
+G−yFBl.

3. The Straub–Werning condition always holds.

We first characterize the first best, and then the equilibrium with binding credit
constraints, for which we discuss existence conditions.

B.1 The First Best

The first-best corresponds to the allocation chosen by the planner that maximizes aggregate
welfare, subject to the sole resource constraint of the economy. The FOCs are:

Uc(ce,t, le,t) = Uc(cu,t, 0), (117)

−Ul(ce,t, le,t) = wFBUc(ce,t, le,t), (118)

µt = βµt+1(1 + FK,t). (119)

We thus have at the steady-state: K/L = KFB/LFB and wFB are given by (58) and (62).
Using the expression of derivatives, we deduce: cu,FB = γ

1−γwFB(1 − le,FB)
σ

1+γ(σ−1) and
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ce,FB = γ
1−γwFB(1− le,FB) with σ

1+γ(σ−1) > 0, where using the resource constraint le,FB is
the solution of:

γ

1− γwFB
(
1− le,FB + (1− le,FB)

σ
1+γ(σ−1)

)
= yFBle,FB −G,

that always exists whenever yFB ≥ G. Combining the resource constraints and the budget
constraints, we compute saving choices ae,FB and au,FB. The condition au,FB ≥ 0 is
equivalent to condition (116), which is an implicit condition on G.

B.2 Case with Binding Credit Constraints

The Ramsey program can then be written as

max
(ce,t,le,t,cu,t,ae,Rt,wt,Bt)t≥0

∞∑
t=0

βt (U(ce,t, le,t) + U(cu,t, 0)) , (120)

s.t. Gt +Bt−1 + (Rt − 1)ae,t−1 + wtle,t = F (ae,t−1 −Bt−1, le,t) +Bt (121)

Uc(ce,t, le,t) = βRt+1Uc(cu,t+1, 0), (122)

−Ul(ce,t, le,t) = wtUc(ce,t, le,t), (123)

where (120) is the Ramsey objective with KPR utility and two-agents types, (121) is the
governmental budget constraint, (122) is the Euler equation, and (123) the labor FOC.
Observe that the latter FOC can also be written as: ce,t = γ

1−γwt(1− le,t). Combined with
the budget constraint of employed agents, we obtain: 1−le,t

1−γ = 1 − ae,t
wt

. The constraints
ce,t ≥ 0 and ae,t ≥ 0 imply 0 ≤ 1−le,t

1−γ ≤ 1 or:

1 ≥ le,t ≥ γ. (124)

The FOCs of the problem (120)–(123) with respect to Bt, le,t, ae,t, wt and Rt can
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respectively be written as:

µt = βµt+1(1 + FK,t+1), (125)

0 = µt(FL,t − wt)− λc,t(wtUcc,t + Ucl,t) (126)

+ λl,t
(
2wtUcl(ce,t, le,t) + Ull(ce,t, le,t) + w2

tUcc(ce,t, le,t)
)
,

0 = µt − βµt+1Rt+1 − λc,t
(
−Ucc(ce,t, le,t)− βR2

t+1Ucc(cu,t+1, 0)
)

(127)

+ λl,t (−Ucl(ce,t, le,t)− wtUcc(ce,t, le,t)) ,

0 = Uc(ce,t, le,t)− µt − λc,tUcc(ce,t, le,t) (128)

+ λl,t
le,t

(Uc(ce,t, le,t) + le,twtUcc(ce,t, le,t) + le,tUcl(ce,t, le,t)) ,

0 = Uc(cu,t, 0)− µt + λc,t−1

ae,t−1
(Uc(cu,t, 0) +Rtae,t−1Ucc(cu,t, 0)) . (129)

By difference of (128) and of (129) (shifted by one period and multiplied bu βRt+1)
and using FOC (127), we obtain:

λl,t
le,t

= λc,t
ae,t

(130)

Plugging this into (126)–(129), we obtain the Ramsey allocation is characterized at
the steady state by the following equations:

1 = β(1 + FK), (131)

µ
(
wFB
w
− 1

)
= −λcUc(ce, le)

ae
(ce
Ucc(ce, le)
Uc(ce, le)

− ce
Ucl(ce, le)
Ul(ce, le)

+ le
Ucl(ce, le)
Uc(ce, le)

− le
Ull(ce, le)
Ul(ce, le)

),

(132)

µ(1− βR) = λcUc(ce, le)
ae

(
ce
Ucc(ce, le)
Uc(ce, le)

− cu
Ucc(cu, 0)
Uc(cu, 0) + le

Ucl(ce, le)
Uc(ce, le)

)
, (133)

µ = Uc(ce, le) + λcUc(ce, le)
ae

(
1 + ce

Ucc(ce, le)
Uc(ce, le)

+ le
Ucl(ce, le)
Uc(ce, le)

)
. (134)

Equation (131) is the usual modified Golden rule, combining equations (132) and (133)
yields a general wedge equation, and equation (134) characterizes the Straub-Werning
condition (i.e., µ > 0). In the general case, the steady-state Ramsey allocation (ce, le, cu)
and prices (R,w) are characterized by equations (131)–(133), as well as FOCs (122) and
(123), the resource constraint ce+cu+G = yFBle and the budget constraint ce+cu/R = wle.

It can be observed that the equilibrium will never exist if for every allocation (ce, le, cu),
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we have τK = 0 or 1−βR = 0. From equation (133), we deduce that this only corresponds
to the separable CRRA utility function (of the type c1−σ

1−σ + v(l)). We formalize in the
following result.

Result 3 The capital tax is null for every allocation (ce, le, cu) iff the utility function is
separable in consumption and labor and features a constant IES for consumption.

In other words, the constant CRRA utility function has a particular status: there is no
parametrization for which an equilibrium with binding credit constraint can exist.

We now specify the allocation characterization in the case of the KPR utility function.
Computing the different partial derivatives of the KPR utility functions implies that
(132)–(134) imply:

1− βR = (FL/w − 1)(1− γ)(σ − 1)le, (135)
Uc(ce, le)

µ
= 1 + (FL/w − 1)(γ − le)(σ − 1), (136)

where (135) is the wedge equation (36) of Proposition 4.
Using the properties of the KPR utility function and (122) and (123) to express prices

in the aggregate budget constraint ce + 1
R
cu = wle and in the wedge equation (135), we

obtain:

γ − le
1− le

U(ce, le) + βγU(cu, 0) = 0,

1− U(ce, le)
U(cu, 0)

cu
ce

=
(
wFBγ

1− le
ce
− (1− γ)

)
(σ − 1)le.

These two equations, together with the resource constraint (ce+cu+G = yFBle) correspond
to the system (115) characterizing the allocation in Proposition 9.

Finally, proceeding to similar substitutions to express prices R and w, equation (136)
can also be written as:

Uc(ce, le)
µ

= 1−
(

1− U(ce, le)
U(cu, 0)

cu
ce

)
1− γ/le

1− γ . (137)

Note that 1−γ/le
1−γ ∈ (0, 1] since le ∈ [γ, 1) (see inequality (124)). We deduce that equation

(137) can also be written as Uc(ce,le)
µ

= 1− (1− U(ce,le)
U(cu,0)

cu
ce

)l̃e with l̃e ∈ (0, 1]. We deduce that
Uc(ce,le)

µ
≥ min(1, U(ce,le)

U(cu,0)
cu
ce

) > 0. Hence, µ > 0 and the Straub-Werning condition always
holds. This concludes the proof.
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C Proof of Proposition 5

We define

yFB := α
α

1−α

(
1
β
− 1 + δ (1− α)

)(
1
β
− 1 + δ

) 1
α−1

> 0, (138)

wFB := (1− α)(K/L)α(= FL(K,L)). (139)

The quantity yFB corresponds to the GDP per unit of labor supply (in efficient units)
in the first-best steady-state equilibrium. Actually, this quantity depends solely on the
capital-to-labor ratio, which is the same in all equilibria because the modified golden rule
always holds; therefore, it does not depend on whether credit constraints bind. Similarly,
wFB is the pre-tax wage, which is identical in all equilibria. We state a result that extends
Proposition 5 and characterizes equilibrium in the case of the a separable utility function.

Proposition 10 In the case of a separable utility function, an interior steady-state solution
(ce, cu, le) with τK > 0 (if it exists) must satisfy the following conditions.

1. Equilibrium allocation definition:
εu(cu)−εu(ce)
εu(ce)+εv(l)

wFBu
′(ce)−v′(le)
v′(le) = u′(cu)−u′(ce)

u′(cu) ,

βu′(cu)cu + u′(ce)ce = v′(le)le,
G+ cu + ce = yFBle.

(140)

2. The no first-best condition is

1 + β

1− βG ≤
1 + β

β

α
1
β

+ δ − 1 − (1− α)
 α

1
β

+ δ − 1

 α
1−α

lFB, (141)

where lFB is the unique root of l ∈ R+ 7→ 2u′−1(w−1
FBv

′(l)) +G− yFBl.

3. The Straub–Werning condition is

εu(cu)− εu(ce)
u′(ce) (1− εu(ce))− u′(cu) (1− εu(cu))

> 0.

The first item of the proposition states that the steady-state allocation (ce, cu, le) can
be computed as the solution of a system of three equations (140); the three conditions of
Proposition 3 are still present. The second and third items correspond to the no first-best
condition and the Straub–Werning condition, respectively. The Laffer condition appears
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implicitly in system (140), particularly in the third equation. As in the previous section,
we start with the first best and then discuss the case with binding credit constraints, using
three different methods to show their equivalence.

C.1 First Best

The first-best allocation is the solution of max(ce,t,cu,t,le,t,Kt)t≥0

∑∞
t=0 β

t(u(ce,t) − v(le,t) +
u(cu,t)) subject to the resource constraint (16). This yields the following FOCs: ce,t = cu,t,
v′(le,t) = FL(Kt−1, le,t)u′(ce,t), and µt = β(1 + FK)µt+1. We deduce that at the steady
state: cFB := ce = cu, and K

L
= α

1
1−α

(
1
β
− 1 + δ

) 1
α−1 . Using yFB and wFB defined in (138)

and (139), we obtain: 2cFB + G = yFBlFB and v′(lFB) = wFBu
′(cFB). We deduce that

cFB is the root of c 7→ 2c+G− yFBv′−1(wFBu′(c)). With u is strictly concave, v strictly
convex, u′(0) =∞ = v′(∞), and v′(0) = 0, cFB exists and is unique.

If the first-best is decentralized, budget constraints and market clearing imply: 2au,FB =
K
L
lFB − β

1−βG−
β

1+βwFBlFB. The condition au,FB ≥ 0 implies then condition (141).

C.2 Binding Credit Constraints

Since unemployed agents are credit-constrained, the planner’s program is:

max
(ce,t,le,t,cu,t,ae,Rt,wt,Bt)t≥0

∞∑
t=0

βt (u(ce,t)− v(le,t) + ωu(cu,t)) , (142)

s.t. Gt +Bt−1 + (Rt − 1)ae,t−1 + wtle,t = F (ae,t−1 −Bt−1, le,t) +Bt, (143)

u′(ce,t) = βRt+1u
′(cu,t+1), and v′(lFB) = wFBu

′(cFB). (144)

with furthermore the budget constraints: ce,t = wtle,t − ae,t and cu,t = Rtae,t−1.

C.2.1 The Dual Approach

We use here the dual approach to solve for the Ramsey program. See Section C.2.2 for the
Lagrangian approach and Section C.2.3 for the primal approach. Denoting by βtµt, βtλc,t,
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and βtλl,t the Lagrange multipliers on constraints (143)–(144), the FOCs become:

µt = βµt+1(1 + FK,t+1), (145)

0 = µt(FL,t − wt)− λc,twtu′′(ce,t)− λl,t
(
v′′(le,t)− w2

tu
′′(ce,t)

)
, (146)

0 = µt − βµt+1Rt+1 + λc,t
(
u′′(ce,t) + βR2

t+1u
′′(cu,t+1)

)
− λl,twtu′′(ce,t), (147)

0 = u′(ce,t)− µt − λc,tu′′(ce,t) + λl,t
le,t

(u′(ce,t) + le,twtu
′′(ce,t)) , (148)

0 = u′(cu,t)− µt + λc,t−1

ae,t−1
(u′(cu,t) +Rtae,t−1u

′′(cu,t)) . (149)

Multiplying FOC (149) considered at t + 1 by βRt+1 and subtracting FOCs (148)
and (147), we deduce: λc,t

ae,t
= λl,t

le,t
. Substituting for λl,t into (146)–(149), we obtain using

the budget constraints ce,t = wtle,t − ae,t, and cu,t+1 = Rt+1ae,t, the FOCs u′(ce,t) =
βRt+1u

′(cu,t+1) and v′(le,t) = wtu
′(ce,t), the notation εu, εv, and λ̃c,t := λc,t

ae,t
u′(ce,t):

0 = µt(
FL,t
wt
− 1)− λ̃c,t (εu(ce,t) + εv(le,t)) , (150)

0 = µt − βRt+1µt+1 + λ̃c,t (εu(ce,t)− εu(cu,t+1)) , (151)

0 = u′(ce,t)− µt + λ̃c,t (1− εu(ce,t)) , (152)

which together with equations (143)–(145) and budget constraints ce,t = wtle,t − ae,t and
cu,t = Rtae,t−1 fully characterizes the allocation.

At the steady state, the FOC (145) implies K/L = KFB/LFB such that FL = wFB

and Y = yFBle. Note that we can rule out the case µ = 0 since it would imply λ̃c = 0 and
u′(ce) = 0. We thus easily deduce equation (37). Using (144) to express prices, we obtain
that the allocation (ce, cu, le) is determined by the equations of system (140).

C.2.2 The Lagrangian Approach

We check that the Lagrangian approach yields the same FOCs as in (145)–(149). We
still denote by βtµt, βtλc,t, and βtλl,t the Lagrange multipliers on constraints (143)–(144),
and additionally define: ψet = −u′(ce,t) + (λc,t − λl,twt)u′′(ce,t), and ψut = −u′(cu,t) −
λc,t−1Rtu

′′(cu,t), and ψ̂xt = µt + ψxt (x = u, e), similar to (28) and (29) when λl,t = 0.
We obtain the following FOCs – where we still denote by βtµt the Lagrange multiplier

on the government budget constraint: (i) µt = βµt+1(1 + FK,t+1), (ii) wtψet = −v′(le,t)−
λl,tv

′′(le,t) + µt(FL,t − wt), (iii) ψ̂et = βRt+1ψ̂
u
t+1, (iv) ψ̂et = λl,t

le,t
u′(ce,t), and (v) ψ̂ut =

λc,t−1
ae,t−1

u′(cu,t). This directly yields (145)–(149) after substitution.
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C.2.3 The Primal Approach

We check that the primal approach yields the same FOCs as in (145)–(149). Using
individual Euler equations, we express prices as a function of allocation and obtain
Rt = u′(ce,t−1)

βu′(cu,t) and wt = v′(le,t)
u′(ce,t) . The planner’s program writes as:

max
(ce,t,le,t,cu,t,ae,t,Bt)t≥0

∞∑
t=0

βt (u(ce,t)− v (le,t) + u(cu,t)) ,

s.t. ce,t + cu,t +Gt + ae,t −Bt =ae,t−1 −Bt−1 + F (ae,t−1 −Bt−1, le,t), (153)

v′(le,t)le,t =u′(ce,t) (ae,t + ce,t) , (154)

u′(ce,t−1)ae,t−1 =βu′(cu,t)cu,t. (155)

Denoting by µt, κl, and κcthe discounted Lagrange multipliers on constraints (153)–(155),
respectively, we obtain the following FOCs:

µt = βµt+1(1 + FK,t+1), (156)

0 = −u′(ce,t) + µt
FL,t
wt
− κl,tu′(ce,t)(1 + le,tv

′′(le,t)
v′(le,t)

), (157)

0 = 1− µt
u′(ce,t)

+ κl,t

(
1 + ce,tu

′′(ce,t)
u′(ce,t)

)
, (158)

0 = 1− µt
u′(cu,t)

+ κl,t−1

(
1 + cu,tu

′′(cu,t)
u′(cu,t)

)
. (159)

FOC (156) is identical to (145), while FOCs (158) and (159) are identical to (148) and
(149) when setting κl,t := λc,t

ae,t
and using the budget constraints. Finally, FOC (158) is

identical to (150) when noticing λ̃c,t = κl,tu
′(ce,t) and using budget constraint.

C.3 Proof of Proposition 6

In the case of the non-utilitarian planner, we can prove the following proposition charac-
terizing the Ramsey allocation (which is again more general than Proposition 6).

Proposition 11 With an non-utilitarian planner and a CRRA-separable utility function,
An interior solution (ce, cu, le) (if it exists) must satisfy the following sets of conditions.
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1. The allocation is determined by (ce, cu, le):

(ω−1)(1−σ)
σ+ 1

ϕ

(
wFBc

−σ
e

χ−1l
1
ϕ
e

− 1
)

= ω −
(
ce
cu

)−σ
,

βc1−σ
u + c1−σ

e = χ−1l
1+ 1

ϕ
e ,

G+ cu + ce = yFBle.

(160)

2. The first-best condition is 1+β
1−βG ≤

(
1+β
1−β

α
1
β

+δ−1 − (1− α)
)(

α
1
β

+δ−1

) α
1−α

χϕwϕFBc
−ϕσ
e +

β
1+β (1−ω 1

σ )ce, where ce is the unit root of c ∈ R+ 7→ c(1+ω 1
σ )+G−yFBχϕwϕFBc−ϕσ.

3. The Straub–Werning condition is ω < 1.

C.3.1 First Best

The first-best allocation is the solution of max(ce,t,cu,t,le,t,Kt)t≥0

∑∞
t=0 β

t(u(ce,t) − v(le,t) +
ωu(cu,t)), subject to the resource constraint. This implies the following FOCs: (i) u′(ce,t) =
ωu′(cu,t), (ii) v′(le,t) = FL(Kt−1, le,t)u′(ce,t), and (iii) µt = β(1 + FK)µt+1. We deduce
that at the steady state, we have K/L = KFB/LFB, ce,FB + cu,FB + G = yFBlFB, and
v′(lFB) = wFBu

′(ce,FB). We deduce that ce,FB is the root of c 7→ c+ u′−1(ωu′(c)) +G−
yFBv

′−1(wFBu′(c)). With the assumptions on u and v, we deduce that ce,FB and cu,FB
exist and are unique.

If the first-best is decentralized, budget constraints imply: 2au,FB = K
L
lFB − β

1−βG−
β

1+β (wFBlFB − ce,FB + cu,FB). The condition au,FB ≥ 0 implies the first-best condition in
Proposition 11 (Item 2).

C.3.2 Binding Credit Constraints

Since unemployed agents are credit-constrained, the planner’s program can be written
as: max(ce,t,le,t,cu,t,ae,Rt,wt,Bt)t≥0

∑∞
t=0 β

t (u(ce,t)− v(le,t) + ωu(cu,t)), subject to constraints
(143)–(144) and budget constraints: ce,t = wtle,t − ae,t and cu,t = Rtae,t−1. For the sake of
simplicity, we only use here on the dual approach. Denoting by βtµt, βtλc,t, and βtλl,t the
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Lagrange multipliers on constraints (143)–(144), FOCs are:

µt = βµt+1(1 + FK,t+1), (161)

0 = µt(FL,t − wt)− λc,twtu′′(ce,t)− λl,t
(
v′′(le,t)− w2

tu
′′(ce,t)

)
, (162)

0 = µt − βµt+1Rt+1 − u′(ce,t) + βRt+1ωu
′(cu,t+1) (163)

+ λc,t
(
u′′(ce,t) + βR2

t+1u
′′(cu,t+1)

)
− λl,twtu′′(ce,t),

0 = u′(ce,t)− µt − λc,tu′′(ce,t) + λl,t
le,t

(u′(ce,t) + le,twtu
′′(ce,t)) , (164)

0 = ωu′(cu,t)− µt + λc,t−1

ae,t−1
u′(cu,t)(1 + cu,tu

′′(cu,t)
u′(cu,t)

). (165)

Multiplying FOC (165) considered at t+1 by βRt+1 and subtracting FOCs (164) and (163),
we deduce: λc,t

ae,t
= λl,t

le,t
. Plugging this into (162)–(165), we obtain using λ̃c,t := λc,t

ae,t
u′(ce,t):

0 = µt(
FL,t
wt
− 1)− λ̃c,t (εu(ce,t) + εv(le,t)) , (166)

0 = µt − βRt+1µt+1 + (ω − 1)u′(ce,t) + λ̃c,t (εu(ce,t)− εu(cu,t+1)) , (167)

0 = ωµt − βRt+1µt+1 + λ̃c,t (1− εu(cu,t+1)− ω(1− εu(ce,t))) . (168)

We thus obtain at the steady state K/L = KFB/LFB from equation (161) and by combi-
nation of (167)–(168):

ω − βR
FL
w
− 1

= ω(1− εu(ce))− (1− εu(cu))
εu(ce) + εv(le)

,

which is equation (37). Using the individual FOCs stating that βR =
(
ce
cu

)−σ
and

wc−σe = χ−1l
1
ϕ
e , we obtain:

(ω − 1)(1− σ)
σ + 1

ϕ

wFBc−σe
χ−1l

1
ϕ
e

− 1
 = ω −

(
ce
cu

)−σ
,

while the two other equations of (160) come from the aggregate budget constraint ce +
cu/R = wFBle and from the resource constraint. Finally solving (123)–(168) at the steady
state yields µ

u′(ce)u′(cu) = 1−ω
u′(cu)−u′(ce) , which implies ω < 1 for the Straub-Werning condition.
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D Simple Model Dynamics After a Period-0 Shock

D.1 Model Linearization and Proof of Proposition 7

Defining θ = 1
1+ϕ

β
1+β , FOCs (69) and (70) and government budget constraint (68) become:

µt = β(1 + αKα−1
t χ(1−α)ϕw

(1−α)ϕ
t+1 − δ)µt+1, (169)

0 = 1− µtwt(χwt)ϕ (1− θ) + ϕ

1 + ϕ
µt(1− α)Kα

t−1(χwt)ϕ(1−α), (170)

Kα
t−1(χwt)ϕ(1−α) = Gt +Kt − (1− δ)Kt−1 + 1

µt
+ (1− θ)wt(χwt)ϕ. (171)

We deduce Rt from 1 = Rtµtθwt−1(χwt−1)ϕ (i.e., FOC (71)) and Bt from Bt = θwt(χwt)ϕ−
Kt (i.e., financial market clearing). We denote by a hat the proportional deviation to the
steady-state value. The linearization of equations (169)–(171) yields:

µ̂t = Etµ̂t+1 + (1− β(1− δ))((α− 1)K̂t + (1− α)ϕEtŵt+1), (172)

0 = −αK̂t−1 + (A− 1)µ̂t + ((ϕ+ 1)(A− 1) + 1 + ϕα)ŵt, (173)

0 = G

Y
Ĝt + α

1
β
− 1 + δ

(
K̂t − β−1K̂t−1

)
− (A− 1)(1− α)ϕ

(
µ̂t

1 + ϕ
− ŵt

)
, (174)

where τL is defined in (87) and A := (1 + 1
ϕ(1+β))(1− τ

L) > 1. The inequality A > 1 comes
from the Straub-Werning condition.

In the remainder, we will focus on full capital depreciation: δ = 1.

Dynamic system. In that case, we obtain from (172)–(174):

Et [µ̂t+1] = rµµ̂t + tµK̂t, (175)

K̂t = rK µ̂t + tKK̂t−1 + sKĜt, (176)

where we have defined:

rµ = (1 + ϕ)(A− 1) + 1 + αϕ

(1 + αϕ)A , tµ = (1− α)(1 + ϕ)(A− 1) + 1
(1 + αϕ)A , tK = 1

β

1
rµ
, (177)

rK = 1− α
αβ

(A− 1) ϕ

1 + ϕ

(
1 + (1 + ϕ)(A− 1)

(1 + ϕ)(A− 1) + 1 + ϕα

)
, sK = − G

αβY
. (178)

Since A > 1, it can be checked that the coefficients tK , rK , tµ are positive, while rµ > 1 and
sK < 0. Note that all these coefficients are defined at the steady-state and are independent
of the values Ĝ0, ρG defining the dynamics of the shock Ĝt.
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Deriving a simplified dynamic system. Using an identification method, we look for
coefficients ρK , σK , ρµ, σµ, such that, for t > 1:

K̂t = ρKK̂t−1 + σKĜt (179)

µ̂t = ρµK̂t−1 + σµĜt. (180)

Combining (175)–(176) yields: EtK̂t+1−(tK+rµ+rKtµ)K̂t+rµtKK̂t−1 = (sKρG−rµsK)Ĝt.
Using (179), we obtain that ρK must solve the following equation:

ρ2
K − (tK + rµ + rKtµ)ρK + rµtK = 0, (181)

whose discriminant is: D = (tK + rµ + rKtµ)2 − 4rµtK . Since tK , rµ, rK , tµ ≥ 0, we
have D ≥ (tK + rµ)2 − 4rµtK = (tK − rµ)2 > 0, where the strict inequality comes from
tK = 1

βrµ
> 0. Equation (181) thus admits two distinct roots, which are:

ρK,1 = tK + rµ + rKtµ +
√
D

2 and ρK,2 = tK + rµ + rKtµ −
√
D

2 . (182)

Since (tK + rµ + rKtµ)2 > D > 0, we deduce that 0 < ρK,2 < ρK,1.

Proof of Proposition 7. Let us now prove that condition (41) is a necessary and
sufficient condition for equilibrium stability. Since 0 < ρK,2 < ρK,1 and ρK,2ρK,1 = β−1 > 1,
we must have ρK,1 > 1, which imposes that ρK = ρK,2. The Blanchard-Kahn condition for
the system stability requires ρK,2 < 1. Note that in the limit case when the equilibrium does
not exist (i.e., τK = τKSW = 1

1−β ), and which corresponds to A = 1, it is straightforward to
check that ρK,2 = 1 and that the dynamic system is not stable. The condition ρK,2 < 1 is
equivalent to J := tK + rµ + rKtµ − rµtK − 1 > 0. Using equations (177)–(178), we can
show that:

J

J0
= (β(1 + ϕ)(A− 1) + (1 + αϕ)(β − A))

+ 1− α
α(1 + ϕ)((1 + ϕ)(A− 1) + 1) (2(1 + ϕ)(A− 1) + 1 + ϕα) ,

where: J0 = ϕ(1− α)(A− 1)
β(1 + αϕ)A((1 + ϕ)(A− 1) + 1 + ϕα) .
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Since A > 1, J0 > 0 and the sign of J is the one of P (A− 1), which is defined as:

P (A− 1) = 1 + αϕ

1 + ϕ
(−(1− β)(1 + ϕ) + 1− α

α
) + (A− 1)2 1− α

α
2(1 + ϕ)

+ (A− 1)
(
−(1− β)(1 + ϕ) + 1− α

α
+ 2(1 + αϕ)1− α

α

)
.

A necessary condition for P (A − 1) > 0 for all A > 1 is P (0) ≥ 0. However, P (0) ≥
0⇒ P ′(0) > 0. So, since P ′′(0) ≥ 0, P (0) ≥ 0 is a necessary and sufficient condition for
P (A− 1) > 0 for A > 1. The condition P (0) ≥ 0 is equivalent to (41), which concludes
the proof of condition (41). Note that a sufficient condition for stability is g1 < 0 since it
implies (41).

D.2 Characterizing the Dynamics of Capital and Public Debt
and Proof of Proposition 8

Characterization of the system (179)–(180). We deduce from (175)–(176) that
(rµ − ρK)ρµ = −tµρK . Since rµ > 1, tµ > 0, and ρK ∈ (0, 1), we deduce that ρµ < 0.
Regarding parameters σK and σµ, we have from (175)–(176):

σK = rKσµ + sK , (183)

rµσµ = (ρµ − tµ)σK + σµρG. (184)

Equation (184) implies (rµ − ρG)σµ = (ρµ − tµ)σK . Using rµ > 1 > ρG and the definition
of ρµ implying that ρµ− tµ = rµρµ/ρK < 0, we deduce that σµ and σK have opposite signs.
Using rK > 0 and sK < 0 in equation (183), we deduce that σµ > 0 > σK .

The role of the shock persistence ρG. Combining (183) and (184) yields: (rµ + (tµ−
ρµ)rK)σµ = (ρµ − tµ)sK + σµρG, or using the implicit function theorem: (rµ − ρG + (tµ −
ρµ)rK) ∂σµ

∂ρG
= σµ, since only σµ (and σK) depend on ρG. Since rµ > 1 > ρG, and σµ, tµ, rK >

0 > ρµ, we deduce using the previous equation and (183) that: ∂σµ
∂ρG

> 0 and ∂σK
∂ρG

> 0. The
previous derivative, and equation (180), imply µ̂0 = σµĜ0, which implies that for the same
initial shock Ĝ0, the increase in µ̂0 is higher, the higher the persistence:

∂µ̂0

∂ρG

∣∣∣∣∣
Ĝ0

> 0 (185)
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Then, from (173), we have: ŵ0 = − A−1
((ϕ+1)(A−1)+1+ϕα µ̂0, which implies ∂ŵ0

∂ρG

∣∣∣
Ĝ0
< 0. Finally,

from ∂σK
∂ρG

> 0, we deduce ∂K̂0
∂ρG

< 0.

Dynamic of the capital stock. By induction, (39) and (179) imply: Ĝt = ρtGĜ and
K̂t = σKφ(t)Ĝ0, with φ(t) = ρt+1

K −ρt+1
G

ρK−ρG
if ρK 6= ρG, or (t + 1)ρtG if ρK = ρG. We have

φ(0) = 1, φ(∞) = 0. Moreover, φ′(tm) = 0 iff:

tm + 1 =


ln(− ln(ρK))−ln(− ln(ρG))

ln(ρG)−ln(ρK) > 0 if ρK 6= ρG,

− 1
ln(ρG) > 0 if ρK = ρG.

It is direct to check that φ′(t) > 0 iff t < tm. The capital response is procyclical (it has the
sign of Ĝ0). When Ĝ0 > 0, capital increases until date tm before decreasing and converging
back to its steady-state value.

We now investigate the impact of ρG on tm. Defining rG := − ln(ρG) and rK := − ln(ρK),

we obtain: ∂tm
∂rG

=
rG−rK
rG

−(ln(rG)−ln(rK))
(rG−rK)2 if ρK 6= ρG. By the Taylor-Lagrange theorem, there

exists r ∈ (rK , rG), such that: ln(rK)− ln(rG) = rK−rG
rG
− (rK−rG)2

2r2 , from which we deduce:

∂tm
∂rG

=


− (rK−rG)2

2r2
(rG−rK)2 < 0 if ρK 6= ρG,

− 1
r2
G
< 0 if ρK = ρG.

So tm decreases with rG and increases with ρG: the more persistent ρG, the longer the
impact of capital dynamics.

Dynamics of public debt. Regarding public debt, the financial market clearing implies
that Bt = β

1+β
χϕ

1+ϕw
1+ϕ
t −Kt. Defining αB := 1

B
β

1+β
χϕ

1+ϕw
1+ϕ, we have: B̂t = αBŵt− (αB −

1)K̂t. Using equations (70), (179), and (180), one finds B̂t = ΘKĜ0ρ
t
K −ΘGĜ0ρ

t
G, with:

ΘK :=
(
αB

α− (A− 1) ρµ
(ϕ+ 1)(A− 1) + 1 + ϕα

− (αB − 1) ρK
)

σK
ρK − ρG

, (186)

ΘG :=
(
αB

α− (A− 1) ρµ
(ϕ+ 1)(A− 1) + 1 + ϕα

− (αB − 1) ρK
)

σK
ρK − ρG

(187)

+ αB
A− 1

(ϕ+ 1)(A− 1) + 1 + ϕα
σµ + (αB − 1)σK .
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Proof of Proposition 8. At impact (t = 0), we have:

BB̂0 = −
(

β

1 + β
χϕw1+ϕ A− 1

(ϕ+ 1)(A− 1) + 1 + ϕα
σµ(ρG) + σK(ρG)K

)
Ĝ0(ρG), (188)

where we have explicitly noted the dependence on ρG. Recall that ∂σµ
∂ρG

> 0, ∂σK
∂ρG

> 0, and

since the ˆNPV 0 is fixed and Ĝ0 endogenous, ∂Ĝ0
∂ρG

∣∣∣∣ ˆNPV
< 0.

As a consequence, if the public debt is positive at the steady state (B > 0 equivalent
to ḡ1 < 0 – see Section A.11), then for a positive exogenous initial shock, Ĝ0 > 0,
∂σµ
∂ρG

> 0, ∂σK
∂ρG

> 0 imply ∂B̂0
∂ρG

< 0. The higher the shock persistence, the greater the

variation of public debt at impact decreases: ∂B̂0
∂ρG

∣∣∣∣
Ĝ0

< 0.

In the case of a constant ˆNPV 0, we have: B ∂B̂0
∂ρG

∣∣∣∣ ˆNPV 0

= ∂B̂0
∂ρG

∣∣∣∣
Ĝ0

+ BB̂0
Ĝ0(ρG)

∂Ĝ0
∂ρG

∣∣∣∣ ˆNPV 0

. If

in addition to B > 0, we also have B̂0 > 0, we deduce since ∂B̂0
∂ρG

∣∣∣∣
Ĝ0

< 0 and ∂Ĝ0
∂ρG

∣∣∣∣ ˆNPV
< 0:

B ∂B̂0
∂ρG

∣∣∣∣ ˆNPV 0

< 0.

E Numerical Examples for Separable Utility Func-
tions

E.1 The KPR Utility Function

We consider the calibration of Table 4. The preference parameters (σ and γ) are in the
same ballpark as to those of Dyrda and Pedroni (2022). The other parameter (β, α
and δ) are set to standard values. In the equilibrium with binding credit constraints for

Parameters Value

discount factor β 0.96
capital share α 0.36

capital depreciation rate δ 0.025
steady-state public spending G 0.5

inverse of IES, σ 2.0
consumption share, γ 0.6

Table 4: Calibration of an economy with a KPR utility function.

unemployed agents, this calibration generates the allocation and prices described in Table
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5 – where we do not repeat that for unemployed, labor supply and asset holdings are null.

Allocation and taxes

employed agents consumption ce 0.644
labor supply le 0.719

unemployed agents consumption cu 0.462
taxes capital tax τK 58.982%

labor tax τL 7.582%

Table 5: Allocation in the economy with the calibration of Table 4.

E.2 The Fishburn Utility Function

As in the KPR case, we provide a numerical example rather than algebra derivation. We
consider the calibration of Table 6. The other parameters (β, α, δ, and G) are identical to
those of Table 4. Note that γ and σ do not play any role in this case.

Parameters Value

labor scaling factor χ 1.0
Frish elasticity ϕ 0.5

utility consumption threshold c 0.7

Table 6: Calibration of an economy with a Fishburn utility function. Other parameters as
in Table 4.

This calibration generates the allocation and prices described in Table 7.

Allocation and taxes

employed agents consumption ce 0.934
labor supply le 1.171

unemployed agents consumption cu 0.697
taxes capital tax τK 9.160%

labor tax τL 0.007%

Table 7: Allocation in the economy with the calibration of Table 6.

Consumption levels are consistent with the threshold c, since cu < c < ce. Tax rates are
positive, and the post-tax gross rate R verifies 0 < βR < 1. Since the function is DRRA,
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the equilibrium existence involves positive taxes and positive NDG. The equilibrium with
binding credit constraint exists.30

E.3 The Stone-Geary Utility Function

We use the calibration of Table 8, while other parameters (β, α, δ, χ, and ϕ) are identical
to those of Table 6.

Parameters Value

utility consumption threshold c 1.0
steady-state public spending G 4.3278

inverse of IES σ 1.0

Table 8: Calibration with a Stone-Geary utility function. Other parameters as in Table 6.

We obtain the allocation of Table 9, featuring positive taxes. As in the Fishburn case,
the equilibrium with binding credit constraints exists and features positive capital and
labor taxes. With a DRRA utility function, the NDG is positive.

Allocation and prices

employed agents consumption ce 1.087
labor supply le 2.910

unemployed agents consumption cu 1.085
taxes capital tax τK 0.626

labor tax τL 0.552

Table 9: Allocation of the economy with the calibration of Table 8.

E.4 The CARA Utility Function

We use the calibration of Table 10. The other parameters (β, α, δ, and ϕ) are identical to
those of Table 6. Note that c does not play any role in this case.

The allocation featuring positive capital taxes is summarized in Table 11. The equilib-
rium with binding credit constraint for unemployed agents thus exists with CARA utility

30We have also checked that: (i) the public spending is too high for the first-best equilibrium to exist,
(ii) the calibration fulfills the Blanchard-Kahn conditions, and (iii) our main result of Proposition 8 still
holds. We also did so for other specifications (Stone-Geary, CARA and non-Utilitarian planner), even
though we do not mention it below.
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Parameters Value

labor scaling factor χ 0.58811
steady-state public spending G 0.01

absolute risk aversion γ 1.0

Table 10: Calibration with a CARA utility function. Other parameters as in Table 6.

function. A particularity of this equilibrium comes from the IRRA property of CARA
utilities. Indeed, IRRA utilities imply negative NDG and hence a negative labor tax for
the capital tax to be positive. 7

Allocation and prices

employed agents consumption ce 0.160
labor supply le 0.139

unemployed agents consumption cu 0.141
taxes capital tax τK 0.473

labor tax τL −0.295

Table 11: Allocation of the economy with the calibration of Table 10.

E.5 The non-Utilitarian Planner

We consider the calibration of Table 12.

Parameters Value

utility consumption threshold c 0.0
steady-state public spending G 0.8
weight of unemployed agents ω 0.99

Table 12: Calibration with a non-utilitarian planner. Other parameters as in Table 6.

Note that c = 0 since we focus on the CRRA case. The allocation featuring positive
capital taxes is summarized in Table 13. The equilibrium with binding credit constraint
for unemployed agents thus exists with CRRA utility function and non-Utilitarian planner.
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Allocation and prices

employed agents consumption ce 1.000
labor supply le 1.251

unemployed agents consumption cu 0.995
taxes capital tax τK 0.125

labor tax τL 0.052

Table 13: Allocation of the economy with the calibration of Table 12.

F The General Model

F.1 Deriving FOCs

The Lagrangian of the Ramsey program (44)–(50) can be written as:

L = E0

∞∑
t=0

βt
ˆ
i

ωitU(cit, lit)`(di)− E0

∞∑
t=0

βt
ˆ
i

(
λic,t −Rtλ

i
c,t−1

)
Uc(cit, lit)`(di) (189)

+ E0

∞∑
t=0

βt
ˆ
i

λil,t
(
Ul(cit, lit) + (1− τt)wt(yit)1−τt(lit)−τtUc(cit, lit)

)
`(di)

− E0

∞∑
t=0

βtµt

(
Gt + (1− δ)Bt−1 + (Rt − 1 + δ)

ˆ
i

ait−1`(di) + wt

ˆ
i

(yitlit)1−τt`(di)

− (
ˆ
i

ait−1`(di)−Bt−1)α(
ˆ
i

yitl
i
t`(di))1−α −Bt

)
.

FOC with respect to savings choices. Using ∂cjt
∂ait

= −1i=j and
∂cjt+1
∂ait

= Rt+11i=j , and
the notation ψit of (51), deriving (189) with respect to ait yields:

ψit = βEt
[
Rt+1ψ

i
t+1

]
+ βEt [µt+1(1 + r̃t+1 −Rt+1)] .

FOC with respect to labor supply. Deriving (189) with respect to lit yields:

ψil,t = (1− τt)wtyit(yitlit)−τtψ̂it + µtFL,ty
i
t − λil,t(1− τt)τtwtyit(yitlit)−τtUc(cit, lit)/lit, (190)

where: ψil,t = −ωitUl(cit, lit)−λil,tUll(cit, lit)+(λic,t−Rtλ
i
c,t−1−λil,t(1−τt)wt(yit)1−τt(lit)−τt)Ucl(cit, lit)

is similar to (51) but for labor supply and not for consumption.
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FOC with respect to the interest rate. Deriving (189) with respect to Rt yields:

0 =
ˆ
j

(
ψ̂jta

j
t−1 + λjc,t−1Uc(cjt , ljt )

)
`(dj).

FOC with respect to the wage rate. Deriving (189) with respect to wt yields:

0 =
ˆ
j

(yjt ljt )1−τt
(
ψ̂jt + λjl,t(1− τt)Uc(c

j
t , l

j
t )/ljt

)
`(dj).

FOC with respect to public debt. Deriving (189) with respect to Bt yields:

µt = β(1 + r̃t+1)µt+1.

FOC with respect to progressivity.

0 =
ˆ
j

(yjt ljt )1−τt
(
ψ̂jt + λjl,t(1− τt)Uc(c

j
t , l

j
t )/ljt

)
ln(yjt ljt )(dj)

+
ˆ
j

λjl,t(y
j
t l
j
t )1−τt(Uc(cjt , ljt )/ljt )`(dj).

F.2 Consistency of the Two Approaches

We verify here that the two approaches we consider (the analytical one of Section 3.1
and the quantitative one of Section 4) yield consistent results. We proceed in two steps.
First, in Section F.2.1, we check that the application of the Lagrangian approach to the
environment of Section 3.1 delivers the same FOCs as in the analytical approach (equations
(103)–(105)). Second, in Section F.2.2, we compare the quantitative outcomes of the two
approaches and show that the analytical solution is the limit of the general solution when
the transition matrix converges to the anti-diagonal matrix.

F.2.1 Checking that FOCs are Identical

We check here that the FOCs of the Ramsey program derived in the general case of
Section 4.1 (i.e., equations (53)–(57)) exactly simplify to the FOCs derived in the specific
case of Section 3.1 (i.e., equations (69)–(72)). The larger number of equations in the
first case comes from the definitions of Lagrange multipliers. We start with expressing
ψit and ψil,t in the context of the GHH utility function. We denote C = c − χ−1 l1+1/ϕ

1+1/ϕ .
Since U(c, l) = ln

(
c− χ−1 l1+1/ϕ

1+1/ϕ

)
, we have: Uc(c, l) = 1

C
, Ucc(c, l) = − 1

C2 , Ul(c, l) =
−χ−1l1/ϕ 1

C
, Ull(c, l) = −χ−1l1/ϕ−1

C

(
1
ϕ

+ χ−1l1/ϕ

C

)
, and Ucl(c, l) = χ−1l1/ϕ

C2 . Plugging this
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into the definitions of ψit and ψil,t, and using the labor Euler equation (11) stating that
χ−1l

i,1/ϕ
t = yitwt, we deduce that the expressions of ψit and ψil,t become:

ψitC
i
t = 1 +

(
λic,t −Rtλ

i
c,t−1

) 1
Ci
t

, (191)

ψil,tC
i
t = yitwt

(
1 +

λil,t
ϕlit

+ (λic,t −Rtλ
i
c,t−1) 1

Ci
t

)
. (192)

We now turn to the FOCs. Note that FOC (54) is exactly the same as FOC (70), while
FOC (57) has no equivalent in the simplified version since the progressivity parameter τt
is set to zero. The definition of ψil,t becomes with τt = 0: ψil,t = wty

i
tψ

i
t + µt(FL,t − wt)yit.

Equations (191) and (192) become: λil,t
ϕlit

yit
Cit

= µt(FL,twt
− 1)yit, which is equivalent to 0 = 0

for unemployed agents since their productivity is null. For employed agents, it becomes:

λe,l,t = ϕµtle,tCe,t
τLt

1− τLt
. (193)

The three remaining FOCs are equations (53), (55), and (56). Taking advantage of the
deterministic transitions, as well as the fact that unemployed agents are credit-constrained
with null productivity, these FOCs can also be written as:

ψe,t − µt = βRt+1(ψu,t+1 − µt+1), (194)

µtCu,t = ψu,tCu,t + λe,c,t−1

ae,t−1
, (195)

µtCe,t = ψe,tCe,t + λe,l,t
le,t

, (196)

while similarly expressions of ψit in (191) can further be specified as:

ψe,tCe,t = 1 + λe,c,t
Ce,t

, (197)

ψu,tCu,t = 1−Rtλe,c,t−1
1
Cu,t

. (198)

Combining (195) and (198) with ae,t−1 = Cu,t
Rt

(unemployed budget constraint) gives:

µtCu,t = 1, (199)

with the expression of Cu,t = Rt
β

1+β
wt−1(χwt−1)ϕ

1+ϕ identical to FOC (71).
Using the consumption Euler equation (19) stating that 1

Ce,t
= βRt+1

1
Cu,t+1

, the budget
constraints (21) and (22) implying that Cu,t = βRtCe,t−1, and (199) meaning that 1 =
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βµt+1Rt+1Ce,t, we deduce from (194) and (197):

λe,c,t
Ce,t

= β

1 + β
(µtCe,t − 1). (200)

Finally, we turn to FOC (196). Combined with the expressions of λe,l,t in (193), ψe,t in
(197), and of λe,c,t in (200), this becomes:

Ce,tµt

(
1− (1 + β)ϕ τLt

1− τLt

)
= 1. (201)

Using the budget constraint (21) stating that Ce,t = wt(χwt)ϕ
(1+β)(1+ϕ) , equation (201) becomes

FOC (72) and hence FOC (69). This completes the proof that the generic FOCs of Section
4.1 exactly imply the FOCs (69)–(72).

F.2.2 Comparing the Quantitative Outcomes of the two Approaches

We show that the analytical solution can be computed as the limit of the quantitative
model where the transition matrix converges to the anti-diagonal matrix of Assumption A.
We thus consider a specification of the quantitative model that is similar to the one of
the analytical model: a GHH utility function, a linear labor tax, a two-state productivity
process, and a zero credit constraint. We consider the transition matrix Πε defined for any

ε ∈ [0, 1] as: Πε =
 ε 1− ε

1− ε ε

, which for ε = 0 corresponds to the anti-diagonal case

of Assumption A.
We use the same calibration as in Figure 1, namely: α = 0.3, β = 0.7, ϕ = 0.3, δ = 1,

G = 0.01, χ = 1. This calibration guarantees the existence of a positive debt and a positive
capital tax in the analytical model (when ε = 0). We compute the optimal steady-state
fiscal policy as a function of ε with the truncation approach, as in Section 4. We plot the
results in Figure 6. The first observation is for low values of ε (from 10−6 to 10−10): the
outcomes of the two models are very similar. The quantitative resolution is thus consistent
with the analytical method. The second observation is when ε increases beyond 10−5,
the capital tax diminishes sharply, while the labor tax goes up. This result is consistent
with intuition. Indeed, in this very stylized setup, a higher ε means that a higher share
of the population remains unemployed with a null income. Their sole resource is their
savings. Diminishing the capital tax fosters savings and enables agents to better self-insure
them-selves against the null income risk. Increasing the labor tax enables the government
to balance its budget – since public spending remains fixed.
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Figure 6: Comparison of the results of the quantitative model (plain lines) to those of the
analytical model (dashed lines).

G The Ramsey Program on the Truncated Model

G.1 Formulation

We define the set of (ξu,0h )h such that:

∑
yt∈Yt|(ytt−N+1,...,y

t
t)=h

u(ct(yt)) = ξu,0h u

( ∑
yt∈Yt|(ytt−N+1,...,y

t
t)=h

ct(yt)
)
,

or compactly: ξu,0h u(ct,h) := ∑
h u(cit). Similarly, we define (ξv,0h ), (ξu,1h ), (ξτh), and (ξv,1h )

such that: ξv,0h v(lt,h) := ∑
h v(lit), ξ

u,1
h u′(ct,h) := ∑

h u
′(cit), ξτh

∑
h(yh0 lt,h)1−τt := ∑

h(yitlit)1−τt ,
and ξv,1t,sNv′(lt,h) := (1− τt)wtξτh(lt,hyh)1−τtξu,1h (u′(ct,h)/lt,h). The Ramsey problem is then:

max
(rt,w̃t,r̃t,τKt ,τt,κt,Bt,Kt,Lt,(ait,cit,lit,νit)i)t≥0

E0

[ ∞∑
t=0

βt
∑
h

St,hωh(ξu,0h u(ct,h)− ξv,0h v(lt,h))
]
,

Gt + Tt + (1 + rt)Bt−1 + rtKt−1 + wtξ
τ
h

∑
h

(lt,hyh)1−τt`(di) = F (Kt−1, Lt, zt) +Bt, (202)

for all h ∈ Y : ct,h + at,h = wtξ
τ
h(lt,hyh)1−τt + (1 + rt)ãt,h + Tt, (203)

at,h ≥ 0, νt,h(at,h + ā) = 0, νt,h ≥ 0, (204)

ξu,Eh u′(ct,h) = βEt
[∑
h̃∈H

Πt,hh̃ξ
u,E

h̃
u′(ct+1,h̃)(1 + rt+1)

]
+ νt,h, (205)

ξv,1h v′(lt,h) = (1− τt)wtξτh(lt,hyh)1−τtξu,1h (u′(ct,h)/lt,h), (206)

Kt +Bt =
∑
h

St,hat,h, Lt =
∑
h

St,hyhlt,h,
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with ãt,h = ∑
h̃∈HΠh̃h,t

St−1,h̃
St,h

at−1,h̃ and St,h = ∑
h̃∈HΠh̃h,tSt−1,h̃.

G.2 Factorization

We now factorize the Ramsey problem of Section G.1. The new Ramsey objective is:

J =E0

∞∑
t=0

βt
∑
h∈H

[
St,h

((
ωhξ

u,0
h u(ct,h)− ξv,0h v(lt,h)

)
− λc,t,hξu,Eh u′(ct,h)

)

+λ̃c,t,h(1 + rt)ξu,Eh u′(ct,h)− λl,t,h
(
v′(lt,h)− (1− τt)wtξτh(yh0 lt,h)1−τtξu,1h u′(ct,h)/lt,h

)]
,

with λ̃t,h = 1
St,h

∑
h̃∈H St−1,h̃λt−1,h̃Πt,h̃,h.

G.3 FOCs of the Planner

The FOCs of the Ramsey program can finally be written as follows:

ψ̂t,h := ωhξ
u,0
h u′(ct,h)− µt (207)

− (λc,t,hξu,Eh − (1 + rt)λ̃c,t,hξu,Eh − λl,t,hξτh(1− τt)wt(yh0 lt,h)1−τtξu,1h /lt,h)u′′(ct,h),

ψ̂t,h = βEt
[
(1 + rt+1)

∑
h̃∈H

Πt,hh̃ψ̂t+1,h̃

]
if νh = 0 and λt,h = 0 otherwise, (208)

ψ̂t,h = 1
(1− τt)wtyh0 ξτh(yh0 lt,h)−τt

(ωhξv,0h v′(lt,h) + λl,t,hξ
v,1
h v′′(lt,h)) (209)

+ λl,t,hτtξ
u,1
h (u′(ct,h)/lt,h)− µt

FL,t
(1− τt)wtξτh(yh0 lt,h)−τt

,

0 =
∑
h∈Y

St,h
(
ψ̂t,hãt,h + λ̃c,t,hξ

u,E
h u′(ct,h)

)
, (210)

0 =
∑
h∈Y

St,hξ
τ
h(lt,hyh0 )1−τt

(
ψ̂t,h + λl,t,h(1− τt)ξu,1h (u′(ct,h)/lt,h)

)
, (211)

µt = βE [µt+1 (1 + FK,t+1 − δ)] , (212)

0 =
∑
h∈Y

St,hλl,t,hξ
τ
h(lt,hyh)1−τtξu,1h (u′(ct,h)/lt,h) (213)

+
∑
h∈Y

St,h
(
ψ̂t,h + λl,t,h(1− τt)ξu,1h (u′(ct,h)/lt,h)

)
ln (lt,hyh) ξτh(lt,hyh)1−τt .

The solution of the Ramsey program for planner in the truncated model is characterized
by equations (202)–(213). These equations can be simulated in two steps. First, we need
to solve the model at the steady state (and more precisely, to obtain the expressions of
the ξs and of the weight ωs that enable one to reproduce the actual US fiscal system at
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the steady state – for further explanation see Section 4.1). Second, the dynamic system
(202)–(213) can then be simulated around the previous steady state using perturbation
method (via Dynare for instance).

H Computing the Steady State

In this section, we provide closed-form formulas for preference multipliers ξs (Section H.1)
and the Pareto weights ωs (Section H.2). We start with some notation:

◦ is the Hadamard product, ⊗ is the Kronecker product, × is the usual matrix product.

For any vector V , we denote by diag (V ) the diagonal matrix with V on the diagonal.
The matrix representation consists in stacking together the equations characterizing

the steady state, so as to provide a convenient matrix notation for solving the steady state.
It also provides an efficient solution to compute the values for the coefficients (ξh) and
(ωh). We assume as given an indexing of histories over H of cardinal Ntot.

H.1 Computing the ξs

We denote with a bold letter the vector associated to a given variable: e.g., S is Ntot-vector
of steady-state history sizes: S = (Sh)h∈H. Similarly, a, c, l, and ν are the Ntot-vectors of
end-of-period wealth, consumption, labor supply, and Lagrange multipliers, respectively.
These vectors are known from the steady-state equilibrium of the Bewley model. We
also define P as the diagonal matrix having 1 on the diagonal at h if and only if the
history h is not credit-constrained (i.e., νh = 0), and 0 otherwise. We also define I as the
(Ntot×Ntot)-identity matrix. Noting Π as the transition matrix across histories, we obtain
the following steady-state relationships. We have:

S = ΠS, (214)

S ◦ c+ S ◦ a = (1 + r)Π (S ◦ a) + wS ◦ ξτ ◦ (y ◦ l)1−τ + T1, (215)

(I − P )a = 0Ntot×1 , (216)

which correspond to: the definition of history sizes, the individual budget constraint
(203), the definition of credit-constrained histories (204). Denoting by Dx the diagonal
(Ntot × Ntot)-matrix with the Ntot-vector x on the diagonal, the Euler equation (205)
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becomes: Du′(c)ξ
u,E = β(1 + r)Π>Du′(c)ξ

u,E + ν, implying that:

ξu,E =
[(
I − β(1 + r)Π>

)
Du′(c)

]−1
ν, (217)

while the labor supply FOC similarly gives:

ξv,1 = (1− τ)w(y ◦ l)1−τ ◦ ξτ ◦ ξu,1 ◦ u′(c)./(l ◦ v′ (l)). (218)

H.2 Finding the Constraints on the Pareto Weights ω

We now construct the constraints that the Pareto weights ω must fulfill for the steady-state
allocation to be optimal for the observed instruments of the planner. More precisely, we
show that there are two vectors L2,L3 such that all the FOCs of the planner are fulfilled
when L2ω = 0 and L3ω = 0. The derivation of these vectors is not complicated, but
tedious. We define the following quantities:

ω̄ := S ◦ ω, λ̄c := S ◦ λc ψ̄ := S ◦ ψ̂,

λ̄l := S ◦ λt, S ◦ λ̃c := Πλ̄c, Π̄ := S ◦Π> ◦ (1./S) ,

ξ̃
u,1 := ξu,1./l, ξ̃

v,1 := ξv,1./((1− τ)wξτ ◦ y1−τ ◦ l−τ ), ξ̃v,0 = ξv,0./((1− τ)wξτ ◦ y1−τ ◦ l−τ ).

With these definitions, planner’s FOCs (207)–(213) become:

ψ̄ = ω̄ ◦ ξu,0 ◦ u′(c)− µS (219)

−
(
λ̄c ◦ ξu,E − (1 + r)Πλ̄c ◦ ξu,E − (1− τ)wλ̄l ◦ ξτ ◦ (y ◦ l)1−τ ◦ ξ̃u,1

)
◦ u′′(c)

Pψ̄ = β(1 + r)P Π̄ψ̄, (220)

0 = ψ̄ − τ ξ̃u,1 ◦ u′(c) ◦ λ̄l + µFLS./((1− τ)wξτ ◦ y−τ ◦ l−τ ) (221)

− ω̄ ◦ ξ̃v,0 ◦ v′(l)− λ̄l ◦ ξ̃
v,1 ◦ v′′(l)

ã>ψ̄ = −
(
ξu,E ◦ u′(c)

)>
Πλ̄c, (222)

0 =
(
ξτ ◦ (y ◦ l)1−τ

)>
ψ̄ + (1− τ)

(
ξτ ◦ (y ◦ l)1−τ ◦ ξ̃u,1 ◦ u′(c)

)>
λ̄l, (223)

0 =
(
ln(y ◦ l) ◦ ξτ ◦ (y ◦ l)1−τ

)>
ψ̄ (224)

+
(
(1 + (1− τ) ln(y ◦ l)) ◦ ξτ ◦ (y ◦ l)1−τ ◦ ξ̃u,1 ◦ u′(c)

)>
λ̄l,

0 = (I − P )λ̄c. (225)
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Expressing Lagrange multipliers as a function of ω̄. Equation (221) yields:

λ̄l = M 0ω̄ +M 1ψ̄ + µV 0, (226)

with: M 0 = −M 1Dξ̃
v,0◦v′(l),

M 1 = D−1
ξ̃
v,1◦v′′(l)+τ ξ̃u,1◦u′(c)

,

V 0 = FLM 1S./((1− τ)wξτ ◦ y−τ ◦ l−τ ).

Then equation (219) implies:

ψ̄ = M̂ 0ω̄ + M̂ 1λ̄c + M̂ 2λ̄l − µS, (227)

with: M̂ 0 = Dξu,0◦u′(c), M̂ 1 = −Dξu,E◦u′′(c)(I − (1 + r)Π),

M̂ 2 = (1− τ)wD
ξτ◦(y◦l)1−τ◦ξ̃u,1◦u′′(c).

With (226) and (227), we get (I−M̂ 2M 1)ψ̄=(M̂ 0+M̂ 2M 0)ω̄+M̂ 1λ̄c+µ(M̂ 2V 0−S):

ψ̄ = M 3ω̄ +M 4λ̄c + µV 1, (228)

with: M 2 = I − M̂ 2M 1, M 4 = M−1
2 M̂ 1,

M 3 = M−1
2 (M̂ 0 + M̂ 2M 0), V 1 = M−1

2 (M̂ 2V 0 − S).

Then, using (220), (225), and (228), we get: ((I − P ) + P (I − β(1 + r)Π̄)M 4)λ̄c =
−P (I − β(1 + r)Π̄)M 3ω̄ − µP (I − β(1 + r)Π̄)V 1 and:

λ̄c = M 5ω̄ + µV 2, (229)

with: R̃5 = −((I − P ) + P (I − β(1 + r)Π̄)M 4)−1P (I − β(1 + r)Π̄),

M 5 = R̃5M 3, V 2 = R̃5V 1.

We then use equation (222), which becomes 0 = ã>(M 3ω̄ + M 4λ̄c + µV 1) + (ξu,E ◦
u′(c))>Πλ̄c, or after using (229):

µ = −L1ω̄, (230)

with: C1 = ã>(V 1 +M 4V 2) + (ξu,E ◦ u′(c))>ΠV 2,

L1 =
(
ã>(M 3 +M 4M 5) + (ξu,E ◦ u′(c))>ΠM 5

)
/C1.
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We deduce that from (226), (228), (229), and (230):

λ̄c = (M 5 − V 2L1)ω̄, (231)

ψ̄ = M 6ω̄, (232)

λ̄l = M̂ 6ω̄, (233)

with: M 6 = M 3 +M 4(M 5 − V 2L1)− V 1L1 and M̂ 6 = M 0 +M 1M 6 − V 0L1.

Constructing the linear constraints on Pareto weights. We use equations (224)
and (223), in which we substitute the expressions (232) and (233) of ψ̄ and λ̄l. We obtain:

L2ω̄ = 0, and L3ω̄ = 0, (234)

with L2 = (ln(y ◦ l) ◦ ξτ ◦ (y ◦ l)1−τ )>M 6 + ((1 + (1− τ) ln(y ◦ l)) ◦ ξτ ◦ (y ◦ l)1−τ ◦ ξ̃u,1 ◦
u′(c))>M̂ 6 and L3 = (ξτ ◦ (y ◦ l)1−τ )>M 6 + (1− τ)(ξτ ◦ (y ◦ l)1−τ ◦ ξ̃u,1 ◦ u′(c))>M̂ 6.

Estimating the Pareto weights. We assume that each history with the same current
productivity has the same weight. As a consequence, there are |Y| different Pareto weights,
ωs, for all histories. We define M 7 as the Ntot × |Y| matrix, whose element mhy is 1 if
history h has current productivity y. We thus have ω̄ = DSM 7ω

s. The Pareto weights
are chosen to minimize the distance to the utilitarian SWF, such that planner’s FOCs
– i.e., equalities (234) – hold. Formally, they solve the following program:

min
ωs

∥∥∥ωs − 1|Y|
∥∥∥2
,

s.t. L2DSM 7ω
s = 0, (235)

L3DSM 7ω
s = 0. (236)

We now solve this linear-quadratic problem. Denoting by µ2 and µ3 the Lagrange multipliers
on the two constraints (235) and (236), the FOCs are: ωs − 1|Y| = ∑3

k=2 µk(LkDSM 7)>,
or after multiplying by LkDSM 7 (k = 2, 3) and using (235) and (236): µ2

µ3

 = M−1
8 V 8, (237)

where: V 8 = −
 L2DSM 71|Y|
L3DSM 71|Y|

 , M 8 =
 L2DSM 7

L3DSM 7

  L2DSM 7

L3DSM 7

> ,
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which finally yields:

ωs = 1|Y| +
 L2DSM 7

L3DSM 7

> (M−1
8 V 8).

I Robustness Check for the Truncation Length

Figures 7 and 8 compare the simulation outcomes for the main variables for two truncation
lengths, N = 20 and N = 25. Figure 7 considers the low persistence ρG = 0.7, while Figure
8 considers the high persistence in turn ρG = 0.97. In both cases, the two simulation
results are undistinguishable.

Figure 7: Comparison of the results of the quantitative model for N = 20 (black solid
line), and N = 25 (blue dashed line) for the main variables for ρG = 0.7.
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Figure 8: Comparison of the results of the quantitative model for N = 20 (black solid
line), and N = 25 (blue dashed line) for the main variables for ρG = 0.97.
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